EMDS: Extensible Multimedia Distribution Service

J. Povedano-Molina
Jose M. Lopez-Vega
Juan M. Lopez-Soler

Signal Theory, Telematics and Communications Department
University of Granada
SPAIN

OMG
Workshop on Real-time, Embedded and Enterprise-Scale Time-Critical Systems
Arlington, VA

May 25, 2010
1 Motivation
- Multimedia content delivery
- Multimedia scenarios

2 EMDS
- Introduction
- Architecture
- Service examples

3 Demo

4 Conclusions
Outline

1. Motivation
 - Multimedia content delivery
 - Multimedia scenarios

2. EMDS
 - Introduction
 - Architecture
 - Service examples

3. Demo

4. Conclusions
Traditionally **Multimedia Services Delivery** adopts client-server paradigms

- It requires ad-hoc centralized servers
- It is strongly coupled
 - *in space*: multimedia producers must be located
 - *in application*: clients are not service agnostic
 - *in format*: clients must support the particular stream format (resolution, sampling and frame rate, codecs,...)
 - *in resources*: network bandwidth, processing capabilities, etc.

Additionally, multimedia data

- Are continuous (stream based)
- Are latency and jitter sensitive: data liveliness is very short
Multimedia Scenarios: video surveillance

- Highly static scenario
- No audio
- Many-to-One communications

Challenges on centralized systems:
- Client application should know the cameras location
- Mixing disparate cameras from different vendors (different protocols and capabilities) can be difficult
Multimedia Scenarios: teleconference

- Real-time data with audio
- Frequent join and leave operations
- Many to many communications

Challenges on centralized systems:
- It requires specialized hardware (e.g. H.323 MCU)
- It lacks of deployment flexibility: difficulties for extending, customizing or composing new multimedia service
Multimedia Scenarios: event streaming

- Video and audio data
- One-to-many communications
- It relies on centralized servers
- Challenges on centralized systems:
 - To increase the scalability, it requires proxy servers
 - It does not provide tools for users feedback
Outline

1. Motivation
 - Multimedia content delivery
 - Multimedia scenarios

2. EMDS
 - Introduction
 - Architecture
 - Service examples

3. Demo

4. Conclusions
EMDS Introduction

- What is EMDS?
 - EMDS stands for *Extensible Multimedia Distribution Service*
 - EMDS is a framework for multimedia services providing and multimedia content delivery based on DDS
 - Data-centric approach
 - Automatic discovery
 - Relies on DDS QoS policies
 - EMDS is designed with extensibility and flexibility as main goals
 - EMDS eases the deployment and customizing new de-coupled multimedia services
 - EMDS is suitable for different scenarios
EMDS Architecture: design issues

- In EMDS each media is published in a different topic (audio and video not multiplexed)
- Media topics are codec agnostic
- New codecs and coding schemes can be easily added
- New services and service customizing can be achieved transparently
- Subscriber applications decide how media are aggregated
EMDS Architecture: content discovery

- EMDS utilizes DDS SDP (Simple Discovery Protocol) for media discovery
- Media capabilities and metadata are distributed alongside with endpoint discovery metadata
 - MIME type
 - Data rates: sample rate (a), bitrate (a/v), framerate (v)
 - Spatial Resolution (v)
 - Decoder configuration
 - Other Specific Parameters (i.e. language (a))
- Media and service capabilities are encoded using JSON
 - Lightweight, structured and human-readable
EMDS Architecture: content discovery

- Non-compatible publications will be filtered
- EMDS includes two levels filtering:
 1. Publications and subscriptions are matched whenever both
 - requested and offered capabilities are compatible and
 - QoS settings are compatible
 2. Filtering by metadata (keywords)
- Discovery can be customized by using domains and partitions
 - Isolating different multimedia profiles
EMDS Architecture: content discovery

```json
{
  "mime-type": "video/h-263++",
  "format": {
    "framerate": 25.0,
    "resolution": "320x240",
    "bitrate": 64000
  },
  "keywords": ["sport","soccer","barcelona","arsenal","champions","league"],
  "description": "Champions League Final: F.C. Barcelona - Arsenal"
}
```

Listing 1: Discovery Metadata
EMDS Architecture: entities

- **Media Producers**
 - 1 or many data publishers
 - i.e. surveillance camera

- **Media Consumers**
 - 1 or many data subscribers
 - i.e. surveillance station

- **Hybrid Entity**
 - **Prosumers**
 - They provide services extending/adapting multimedia topics
 - i.e. teleconferencing, transcoding services,...
Media Producers send multimedia streams produced according to certain encoding settings (different partitions can be used)
 - Each video producer can publish streams with multiple profile settings
 - Profile settings are disseminated during discovery

Media Consumers receive multimedia streams
 - Decode and render pipelines are built according to encoding settings found in the discovery
 - Appropriate decoders are chosen
EMDS Architecture: media producers

- **Encoder block:**
 - Media Adapter: resolution, framerate, ...
 - Encoder: bitrate, ...
 - Stream Adapter: packet splitting
 - Multiple encoder blocks
EMDS Architecture: media producers

- Encoder block:
 - Media Adapter: resolution, framerate, ...
 - Encoder: bitrate, ...
 - Stream Adapter: packet splitting

- Multiple encoder blocks
EMDS Architecture: media producers

- **Encoder block:**
 - Media Adapter: resolution, framerate, ...
 - Encoder: bitrate, ...
 - Stream Adapter: packet splitting

- **Multiple encoder blocks**
EMDS Architecture: media producers

- **Encoder block:**
 - Media Adapter: resolution, framerate, ...
 - Encoder: bitrate, ...
 - Stream Adapter: packet splitting

- Multiple encoder blocks
EMDS Architecture: media producers

- Encoder block:
 - Media Adapter: resolution, framerate, ...
 - Encoder: bitrate, ...
 - Stream Adapter: packet splitting
- Multiple encoder blocks
EMDS Architecture: media consumers

- **Decoder block**
 - Configure decoder according to metadata acquired in the discovery phase
 - Feed the decoder with topic samples
 - Adapt the decoded stream to the output device
EMDS Architecture: media consumers

- Decoder block
 - Configure decoder according to metadata acquired in the discovery phase
 - Feed the decoder with topic samples
 - Adapt the decoded stream to the output device
EMDS Architecture: media consumers

- Decoder block
 - Configure decoder according to metadata acquired in the discovery phase
 - Feed the decoder with topic samples
 - Adapt the decoded stream to the output device
EMDS Architecture: media consumers

- Decoder block
 - Configure decoder according to metadata acquired in the discovery phase
 - Feed the decoder with topic samples
 - Adapt the decoded stream to the output device
EMDS Architecture: multimedia handling (subscriber)

- Multimedia data are processed according to metadata.
- Pipeline is generated dynamically.
 1. Mime Type is analyzed
 2. Appropriate decoder is chosen
 3. Media is adapted to the device format and sent to the appropriate output
EMDS services examples

- Multiple services can be implemented on top of EMDS
- With data-centric approach no modifications are necessary on producer nor consumers
 - Services can be added in a transparent manner
 - Network can be extended
- Extensibility: new features are easily provided
- Flexibility: choosing appropriate services to fit a given scenario
EMDS services examples: compositing

- EMDS mixes several streams
- EMDS reduces the subscriber data processing requirements
- Processing is done at intermediate (prosumer) nodes
EMDS services examples: transcoding

- EMDS allows multimedia streams transformations to adapt subscribers capabilities
 - Codec
 - Bitrate
 - Resolution

- The transcoding (*prosumer*) node subscribes to media streams, and re-codes them using different encoding parameters

- The new streams are re-published by the *prosumer*

- Network resources can be preserved by publishing the different streams in appropriate domain partitions
EMDS services examples: video annotation

- Sketching in video like a *telestrator* does
- Video can be annotated in a different node
- Subscriber application merges video and annotation topics
- Annotations are published in different topics
 - i.e. use a white-board protocol
- No video recoding
EMDS services examples: recording

- Multimedia sessions can be stored in recording nodes
- Multiple media topics are stored in unique multimedia container
- Multimedia containers can include multiple streams
 - video
 - multiple audio languages
 - subtitles
- Example application: recording a seminar
1 Motivation
 - Multimedia content delivery
 - Multimedia scenarios

2 EMDS
 - Introduction
 - Architecture
 - Service examples

3 Demo

4 Conclusions
EMDS Demonstration
Outline

1. Motivation
 - Multimedia content delivery
 - Multimedia scenarios

2. EMDS
 - Introduction
 - Architecture
 - Service examples

3. Demo

4. Conclusions
Conclusions

- EMDS is a highly flexible system for multimedia content delivery
- Automatic discovery removes dependency on directory services
- Filtering during discovery phase optimizes resources
- EMDS de-couples the multimedia content production and consumption, as a result new multimedia services can be transparently added (or customized) with minimal impact
Thank You!

Acknowledgment: this work has been partially supported by the Ministerio de Ciencia e Innovacion of the Spanish Government under the project TIN2009-13992-C02-02, and the Plan Propio of the University of Granada, Spain.