Journals

  1. 5G Infrastructure Network Slicing: E2E Mean Delay Model and Effectiveness Assessment to Reduce Downtimes in Industry 4.0
    Lorena Chinchilla-Romero, Jonathan Prados-Garzon, Pablo Ameigeiras, Pablo Muñoz, Juan M. Lopez-Soler
    Sensors, 22 (1), 2022, DOI: 10.3390/s22010229. (IF = 3.275, Q1)
    "5G Infrastructure Network Slicing: E2E Mean Delay Model and Effectiveness Assessment to Reduce Downtimes in Industry 4.0", Lorena Chinchilla-Romero, Jonathan Prados-Garzon, Pablo Ameigeiras, Pablo Muñoz, Juan M. Lopez-Soler, Sensors, 22 (1), 2022. DOI: 10.3390/s22010229
    close
    Fifth Generation (5G) is expected to meet stringent performance network requisites of the Industry 4.0. Moreover, its built-in network slicing capabilities allow for the support of the traffic heterogeneity in Industry 4.0 over the same physical network infrastructure. However, 5G network slicing capabilities might not be enough in terms of degree of isolation for many private 5G networks use cases, such as multi-tenancy in Industry 4.0. In this vein, infrastructure network slicing, which refers to the use of dedicated and well isolated resources for each network slice at every network domain, fits the necessities of those use cases. In this article, we evaluate the effectiveness of infrastructure slicing to provide isolation among production lines (PLs) in an industrial private 5G network. To that end, we develop a queuing theory-based model to estimate the end-to-end (E2E) mean packet delay of the infrastructure slices. Then, we use this model to compare the E2E mean delay for two configurations, i.e., dedicated infrastructure slices with segregated resources for each PL against the use of a single shared infrastructure slice to serve the performance-sensitive traffic from PLs. Also we evaluate the use of Time-Sensitive Networking (TSN) against bare Ethernet to provide layer 2 connectivity among the 5G system components. We use a complete and realistic setup based on experimental and simulation data of the scenario considered. Our results support the effectiveness of infrastructure slicing to provide isolation in performance among the different slices. Then, using dedicated slices with segregated resources for each PL might reduce the number of the production downtimes and associated costs as the malfunctioning of a PL will not affect the network performance perceived by the performance-sensitive traffic from other PLs. Last, our results show that, besides the improvement in performance, TSN technology truly provides full isolation in the transport network compared to standard Ethernet thanks to traffic prioritization, traffic regulation, and bandwidth reservation capabilities.
    close
    @Article{s22010229,
    AUTHOR = {Chinchilla-Romero, Lorena and Prados-Garzon, Jonathan and Ameigeiras, Pablo and Muñoz, Pablo and Lopez-Soler, Juan M.},
    TITLE = {5G Infrastructure Network Slicing: E2E Mean Delay Model and Effectiveness Assessment to Reduce Downtimes in Industry 4.0},
    JOURNAL = {Sensors},
    VOLUME = {22},
    YEAR = {2022},
    NUMBER = {1},
    ARTICLE-NUMBER = {229},
    URL = {https://www.mdpi.com/1424-8220/22/1/229},
    PubMedID = {35009771},
    ISSN = {1424-8220},
    ABSTRACT = {Fifth Generation (5G) is expected to meet stringent performance network requisites of the Industry 4.0. Moreover, its built-in network slicing capabilities allow for the support of the traffic heterogeneity in Industry 4.0 over the same physical network infrastructure. However, 5G network slicing capabilities might not be enough in terms of degree of isolation for many private 5G networks use cases, such as multi-tenancy in Industry 4.0. In this vein, infrastructure network slicing, which refers to the use of dedicated and well isolated resources for each network slice at every network domain, fits the necessities of those use cases. In this article, we evaluate the effectiveness of infrastructure slicing to provide isolation among production lines (PLs) in an industrial private 5G network. To that end, we develop a queuing theory-based model to estimate the end-to-end (E2E) mean packet delay of the infrastructure slices. Then, we use this model to compare the E2E mean delay for two configurations, i.e., dedicated infrastructure slices with segregated resources for each PL against the use of a single shared infrastructure slice to serve the performance-sensitive traffic from PLs. Also we evaluate the use of Time-Sensitive Networking (TSN) against bare Ethernet to provide layer 2 connectivity among the 5G system components. We use a complete and realistic setup based on experimental and simulation data of the scenario considered. Our results support the effectiveness of infrastructure slicing to provide isolation in performance among the different slices. Then, using dedicated slices with segregated resources for each PL might reduce the number of the production downtimes and associated costs as the malfunctioning of a PL will not affect the network performance perceived by the performance-sensitive traffic from other PLs. Last, our results show that, besides the improvement in performance, TSN technology truly provides full isolation in the transport network compared to standard Ethernet thanks to traffic prioritization, traffic regulation, and bandwidth reservation capabilities.},
    DOI = {10.3390/s22010229},
    project={5gclarity|true5g},
    impact={(IF = 3.275, Q1)}
    }
    close


Conferences & Workshops

  1. WiMuNet's research lines
    J. Navarro-Ortiz, N. Chinchilla-Romero, L. Chinchilla-Romero, J. Prados-Garzon, F. Delgado-Ferro, P. Ameigeiras, P. Munoz-Luengo, J. J. Ramos-Munoz, J. M. Lopez-Soler
    VI Workshop on QoE, QoS on Multimedia Communications (QQCM'21), 2021.
    "WiMuNet's research lines", J. Navarro-Ortiz, N. Chinchilla-Romero, L. Chinchilla-Romero, J. Prados-Garzon, F. Delgado-Ferro, P. Ameigeiras, P. Munoz-Luengo, J. J. Ramos-Munoz, J. M. Lopez-Soler, "VI Workshop on QoE, QoS on Multimedia Communications (QQCM'21)", ISBN 9788409311248, 2021
    close
    @Inproceedings{jnavarroqqcm21, author={J. {Navarro-Ortiz} and N. {Chinchilla-Romero} and L. {Chinchilla-Romero} and J. {Prados-Garzon} and F. {Delgado-Ferro} and P. {Ameigeiras} and P. {Munoz-Luengo} and J. J. {Ramos-Munoz} and J. M. {Lopez-Soler}}, booktitle={VI Workshop on QoE, QoS on Multimedia Communications (QQCM'21)}, isbn={9788409311248}, title={WiMuNet's research lines}, year={2021}, url={https://sites.google.com/unizar.es/qqcm-2021/agenda}, project={5gclarity|true5g|artemis}}
    close

  2. Rendimiento de Redes 4G/5G usando una estación base real (Performance of 4G/5G networks using a real base station)
    F. Delgado-Ferro, J. Navarro-Ortiz, L. Chinchilla-Romero, P. Munoz-Luengo
    XV Jornadas de Ingeniería Telemática (JITEL 2021), 2021.
    "Rendimiento de Redes 4G/5G usando una estación base real (Performance of 4G/5G networks using a real base station)", F. Delgado-Ferro, J. Navarro-Ortiz, L. Chinchilla-Romero, P. Munoz-Luengo, "XV Jornadas de Ingeniería Telemática (JITEL 2021)", 2021
    close
    @INPROCEEDINGS{fdelgado_jitel21a,  author={F. {Delgado-Ferro} and J. {Navarro-Ortiz} and L. {Chinchilla-Romero} and P. {Munoz-Luengo}},  booktitle={XV Jornadas de Ingeniería Telemática (JITEL 2021)}, title={Rendimiento de Redes 4G/5G usando una estación base real (Performance of 4G/5G networks using a real base station)}, year={2021}, project = {5gclarity|true5g}, pdf={https://digibug.ugr.es/handle/10481/71140}}
    close

  3. Asynchronous Time-Sensitive Networking for Industrial Networks
    Jonathan Prados-Garzon, Lorena Chinchilla-Romero, Pablo Ameigeiras, Pablo Muñoz, Juan M. Lopez-Soler
    2021 Joint European Conference on Networks and Communications 6G Summit (EuCNC/6G Summit), pp. 130-135, 2021, DOI: 10.1109/EuCNC/6GSummit51104.2021.9482597.
    "Asynchronous Time-Sensitive Networking for Industrial Networks", Jonathan Prados-Garzon, Lorena Chinchilla-Romero, Pablo Ameigeiras, Pablo Muñoz, Juan M. Lopez-Soler, "2021 Joint European Conference on Networks and
    Communications   6G Summit (EuCNC/6G Summit)", pp. 130-135, 2021. DOI: 10.1109/EuCNC/6GSummit51104.2021.9482597
    close
    @INPROCEEDINGS{9482597,
       author={Prados-Garzon, Jonathan and Chinchilla-Romero, Lorena and Ameigeiras, Pablo and Muñoz, Pablo and Lopez-Soler, Juan M.},
       booktitle={2021 Joint European Conference on Networks and
    Communications   6G Summit (EuCNC/6G Summit)},
       title={Asynchronous Time-Sensitive Networking for Industrial Networks},
       year={2021},
       volume={},
       number={},
       pages={130-135},
       project={5gclarity|true5g},
       doi={10.1109/EuCNC/6GSummit51104.2021.9482597}}
    close


Standards


White Papers

  1. AI and ML - Enablers for Beyond 5G Networks
    J. Prados-Garzon, L. Chinchilla-Romero, P. Muñoz, J. J. Ramos-Munoz
    "AI and ML - Enablers for Beyond 5G Networks", J. Prados-Garzon, L. Chinchilla-Romero, P. Muñoz, J. J. Ramos-Munoz, 5G PPP, 2021. DOI: 10.5281/zenodo.4299895
    close
    @techreport{5GPPPWP2021,
      author      = "J. {Prados-Garzon} and L. {Chinchilla-Romero} and P. {Muñoz} and J. J. {Ramos-Munoz}",
      title       = "AI and ML - Enablers for Beyond 5G Networks",
      institution = "5G PPP",
      year        = "2021",
      type        = "whitepaper",
      number      = "",
      address     = "",
      month       = "May",
      note        = "",
      annote      = "",
      DOI = {10.5281/zenodo.4299895},
      URL={https://5g-ppp.eu/wp-content/uploads/2021/05/AI-MLforNetworks-v1-0.pdf},
      project = {5gclarity}
    }
    close


Deliverables

  1. Project H2020 5G-CLARITY (Grant No. 871428): Deliverable D6.1. Plan for explotation and dissemination of the project results
    J. M. Lopez-Soler, O. Adamuz-Hinojosa, J. Navarro-Ortiz, L. Chinchilla-Romero, J. Prados-Garzon, J. Ordonez-Lucena, G. Rigazzi, U. Olvera-Hernandez, D. Camps-Mur, A. Garcia, T. Cogalan, S. Yan, R. Bian, E. Aumayr, M. A. Granda, J. Gutierrez-Teran, M. Ghoraishi
    "Project H2020 5G-CLARITY  (Grant No. 871428): Deliverable D6.1. Plan for explotation and dissemination of the project results", J. M. Lopez-Soler, O. Adamuz-Hinojosa, J. Navarro-Ortiz, L. Chinchilla-Romero, J. Prados-Garzon, J. Ordonez-Lucena, G. Rigazzi, U. Olvera-Hernandez, D. Camps-Mur, A. Garcia, T. Cogalan, S. Yan, R. Bian, E. Aumayr, M. A. Granda, J. Gutierrez-Teran, M. Ghoraishi, 5G-CLARITY, 2020
    close
    @techreport{5GCLARITYD61,
      author      = "J. M. {Lopez-Soler} and O. {Adamuz-Hinojosa} and J. {Navarro-Ortiz} and L. {Chinchilla-Romero} and J. {Prados-Garzon} and J. {Ordonez-Lucena} and G. {Rigazzi} and U. {Olvera-Hernandez} and D. {Camps-Mur} and A. {Garcia} and T. {Cogalan} and S. {Yan} and R. {Bian} and E. {Aumayr} and M. A. {Granda} and J. {Gutierrez-Teran} and M. Ghoraishi",
      title       = "Project H2020 5G-CLARITY  (Grant No. 871428): Deliverable D6.1. Plan for explotation and dissemination of the project results",
      institution = "5G-CLARITY",
      year        = "2020",
      type        = "deliverable",
      month       = "Jan",
      URL         = {https://www.5gclarity.com/wp-content/uploads/2020/06/5G-CLARITY_D61.pdf},
      project     = {5gclarity}
    }
    close


Books & Book Chapters


Patents