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Abstract— The popularity of P2P networks makes them an 
attractive target for hackers. Potential vulnerabilities in the 
software used in P2P networking represent a big threat for 
users and the whole community. To prevent and mitigate the 
risks, intrusion detection techniques have been traditionally 
applied. In this work in progress, a Markov based technique is 
applied to the detection of anomalies in the usage of P2P 
protocols. The detector searches for two kinds of anomalies: 
those that appear in the structure, grammar and semantics of 
each of the messages in the protocol, and those associated to 
the sequence of messages (protocol sessions). Previous results 
from other protocols, as HTTP and DNS, confirm the 
potentialities of the approach. 
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I.  INTRODUCTION  
Society’s current dependency on communication 

networks, especially Internet, together with the increasing 
complexity of networks and the associated protocols, makes 
it necessary to possess ever more robust and reliable security 
techniques to protect services and users. In this context, the 
popularity of P2P networks, with millions of computers 
connected through networks as eDonkey [1] or BitTorrent 
[2], makes them an attractive target for hackers. The ubiquity 
of associated software allows potential hackers 
compromising many systems if vulnerabilities in the 
programs were detected and exploited. For this reason, 
security tools are essential to mitigate the associated risks. 

One of the tools available for this purpose are the 
Intrusion Detection Systems (IDS) [3][4]. First proposed in 
the 1980s, they aim at detecting intrusion events, i.e., actions 
that might put at risk the security of a given target 
environment. Despite its age, some limitations and 
challenges still remain, mainly related to the performance 
achieved by current IDS technologies [5]. In fact, this is an 
active research area at present. 

IDS systems are usually categorized in two broad sets 
[6], depending on the strategy used for the detection. 
Signature-based IDSs (SIDS) try to detect intrusions by 
somehow comparing current events with a set of rules that 
define known attacks. On the other hand, anomaly-based 
IDSs (AIDS) model the normal behavior of a monitored 
system and its communications, and trigger an alert every 
time a significant deviation is observed in the analyzed 
behavior. Both kinds of approaches present advantages and 
drawbacks, the most relevant being the greater efficiency of 

SIDSs when detecting known attacks and also their inability 
to detect new attacks. A more detailed description of SIDS, 
AIDS and their capabilities can be found in [6][7][8]. 

In this work in progress, a new technique for anomaly 
detection previously developed by the authors is applied to 
P2P systems. The technique, named “Service Specification 
and Stochastic Markovian modeling” (S3M) [9][10], has 
previously been applied to two widely used protocols like 
HTTP and DNS, with satisfactory results. S3M is a mixed 
approach that combines the use of specifications and learning 
in a stochastic framework, by using probabilistic finite state 
automata (FSA).  

The proposed technique can model most of the protocols 
used in network communications and it can be used at two 
levels. Each individual message of the protocol is modeled at 
the first level, while the second tries to model the sequences 
of messages (i.e., protocol sessions). It is possible to 
combine both models to account for potential interactions 
among anomalies at messages and sessions. The detection at 
the individual messages level is useful for the detection of 
attacks targeted at exploiting vulnerabilities in the software, 
by using specially crafted messages or ill-formed messages. 
On the other hand, the detection at the sequence level can 
detect attacks to the protocol itself (flaws in the protocol 
design) or attempts to get advantage from it. An example of 
the latter could be the detection of worms propagating using 
P2P networks by examining the traces of the protocol.  

Although it is still at the initial stages, the adaptation of 
the technique is promising and challenging. In this paper, we 
highlight the main challenges that we are facing during this 
research and the strategies followed to solve them. In a first 
phase, only eDonkey and BitTorrent networks are 
considered.   

The rest of the paper is structured as follows. Some 
basics of the S3M technique are explained in Section II. 
Section III describes the main challenges found in the 
adaptation of the technique to P2P protocols, and the 
strategies followed for obtaining solutions. Finally, Section 
IV summarizes the conclusions of this paper. 

II. THE MARKOV-BASED S3M TECHNIQUE 
Most network protocols, especially those in the 

application layer, present a well defined structure for the 
messages and the sequences of messages exchanged by the 
involved service entities. This structure is given through 
corresponding protocol specifications, and makes it possible 
to use formal methods to describe both the way in which 
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each message is generated and the allowed sequences of 
messages in the protocol [11]. In these cases, a FSA can be 
used to model the normal behaviour of a given protocol. An 
example is the well-known FSA describing the behaviour of 
the TCP protocol [12].  

When these FSAs are used for intrusion detection, a 
drawback of this approach is that it only considers the 
correctness of the message or sequence of messages, in 
terms of compliance with the specifications. The detection is 
specification-based. This is usually insufficient, as in many 
cases a single or several (a sequence) messages originating 
an attack still obey the rules specified by the FSA. Besides, 
many protocols are not fully specified, or leave certain 
details uncovered. This fact would allow a hacker to attack a 
protocol while no violation of its FSA is observed. 

A more advanced approach is to build the FSAs as in the 
previous method in a first phase, and to evaluate the 
likelihood of the instances of the protocol by considering 
probabilities associated to the automata, i.e., probabilistic 
finite state automata (PFSA). Here, each of the states of the 
FSA is viewed as a Markov source emitting symbols. The 
symbols may represent either certain fields of a single 
protocol message or types of messages, e.g., ACK, HELLO, 
etc., depending on the level of description considered. This 
is the approach considered in the S3M modelling, which is 
briefly described next. 

 

A. S3M modelling basics 
 

S3M makes use of the Markov theory [13] to provide a 
production model consisting of a FSA and the associated 
probabilities for the observed events or transitions between 
states. A given sequence of events, p, can be evaluated by a 
model, λ, to provide a probability, P(p|λ), of the events 
being generated by the model. From this probability, it is 
possible to define a normality score, Ns(p), as 
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Assuming that the model properly represents the normal 
behavior, Ns(p) can be used to classify the events as either 
normal or anomalous, according to a given threshold, θ: 
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B. Estimation of the model 
 

In S3M, the model for a protocol is derived from both 
the protocol specification and the observation of “normal” 
instances of the protocol in a monitored environment. The 
model is composed of two main elements: (a) a finite state 
automaton (FSA), defined by the states and the links 
connecting them (allowed transitions); and (b) a set of 
observable events with some probabilities associated with 

the different states, events and transitions. First, the 
topology of the FSA (states, links or transitions and 
final/initial states) is deduced from the specification of the 
protocol. Second, the transition probabilities, the set of 
events and their respective probabilities are calculated 
through a training process in which two complementary 
information sources are considered: (i) the observed 
legitimate messages or sequences of messages and (ii) the a 
priori allowed values of the different message fields. These 
sources are used for building a stochastic model that allows, 
in a posterior phase, the calculation of the probabilities 
P(p|λ). For this purpose, it is necessary to assign observation 
probabilities for each event in each state.  

The set of possible events in the FSA may be extracted 
from a specification or from any other source of 
information. In this case, it is hard to estimate the 
information related to the probability P(p|λ), since usually 
there is only information about if a given event is allowed or 
not in each state. For this reason, it is necessary to apply a 
training procedure, in which traffic traces containing the 
events (messages, sequences of messages and field values 
within messages) are analyzed. In this case, the probabilities 
are estimated by an accounting procedure, considering the 
frequencies of appearance of each event (sequences of 
messages or field values within messages). Thus, the 
probability of observing an event ek in a state si is estimated 
as 
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where M stands for the total number of events in the state i.  

 
It is advisable to combine both sources of information, 

i.e., specifications and traffic traces, as in many real services 
it is not feasible to acquire the whole set of events by an 
inspection of the specifications. This makes it essential to 
perform the training procedure. 

Another significant advantage about the use of the 
training procedure must be indicated. It allows reviewing 
the topology of the FSA, including transition probabilities 
according to the observed data. Hence, the set of accepted 
transitions could be modified to incorporate that knowledge 
provided by the training data in two aspects: the relative 
frequency of occurrence of each transition (event), and the 
transitions themselves.  

Moreover, many protocols are not completely specified, 
which results in different implementations, with few minor 
differences among them. The use of training data to estimate 
the allowed transitions and to assign probability values to 
them allows incorporating these differences into the model. 
Furthermore, if the set of training data is representative 
enough, there would be no need to initially establish the 
FSA manually from specifications, as it could be deduced 
from the training process. As it will be discussed below, this 
is an important advantage for complex protocols, as is the 
case in P2P protocols.  
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III. CHALLENGES AND STRATEGIES FOR THE USE OF S3M 
IN P2P PROTOCOLS 

 
The aim of this work in progress is to use the S3M 

technique for the security analysis of P2P protocols. In this 
direction, we are currently working on the adaptation of the 
S3M technique in two levels. One model is being developed 
for the inner structure of each protocol message, and another 
for the sequences of messages (sessions) exchanged during 
the different operations of the protocol. In a first phase, we 
are considering only protocols used by eMule and 
BitTorrent, as they are widely deployed protocols. 

Although it could seem that, based on the experience on 
HTTP and DNS, S3M could be applied to P2P protocols in 
a straightforward way, some new challenges appear when 
trying to afford this task, mainly due to the special features 
of P2P protocols. Some of these peculiarities and challenges 
are described in the following. 
 
Protocol complexity. P2P protocols are more complex than 
DNS or HTTP in the sense that they consider many different 
types of messages, and the sessions in the protocols usually 
involve the exchange of large sequences of messages. As an 
example, the specification of the HTTP protocol defines two 
types of messages, i.e., request and response, with only 
eight possible methods, i.e., GET, POST, HEAD, 
OPTIONS, etc. However, in the eMule implementation of 
the eDonkey protocol, we have detected more than 12 
different kinds of sessions between clients or between a 
client and an eMule server. Besides, the number of different 
messages in the protocol is higher than 30.  
This means that building FSAs for P2P protocols result in 
really big automata when compared to those obtained for the 
HTTP or DNS protocols. For this reason, we have designed 
a methodology that allows the split of the automaton for the 
whole protocol in different sub-automata, representing 
diverse operations in the protocol. Dealing with these 
reduced size sub-automata becomes now a feasible task, 
especially if this automata should be trained as a previous 
step to a detection phase. As an example, in Fig. 1 we can 
see the sub-FSA used for the connection establishment in 
the eDonkey protocol.  
 
Lack of strict implementations. As opposed to protocols 
like HTTP and DNS, which are well specified in publicly 
available documents, P2P protocols tend to be not well 
documented, or the specifications lack of information. In 
many cases, these specifications have been obtained through 
techniques like reverse engineering of the own software that 
implements the protocol. 
Besides this fact, it is remarkable that even for a same 
protocol, e.g., eDonkey, many different implementations 
appear (see Table I for implementations of the eDonkey 
protocol). Many of them contain certain bugs and others 
even consider certain extensions for the own application, 
e.g., eMule extensions.  

As a consequence of these facts, the process of building 
automata for the protocol becomes even harder when 
compared with the HTTP or DNS case. For this reason, in 
this ongoing work we have designed a methodology for 
building the automata as a dynamic (not manual) process. 
We are currently evaluating an incremental approach that 
builds the sub-automata in several phases. The final 
objective is to develop a complete model for the protocol, 
starting from smaller sub-automata. In a first phase, a 
relatively small subset of sub-FSAs is manually generated 
by using one of the available specifications of the protocol, 
also identifying in this process a subset of the types of 
messages. Then, some traces are captured in a controlled 
environment. The available sub-FSAs are verified by using 
these traces, and the observed deviations are incorporated 
into the models. In this process, we are somehow training 
the sub-FSAs, as it is possible to redefine the allowed 
transitions between states and the available messages when 
doing these transitions. Next, those messages belonging to 

TABLE I.  PRESENCE OF DIFFERENT IMPLEMENTATIONS FOR THE 
EDONKEY PROTOCOL 

Implementation 
Presence 

# of observed clients Percentage of 
observed clients 

eDonkey 12940214 14.23% 

Old mldonkey 4708 0.01% 

New mldonkey 87941 0.10% 

Overnet 5844641 6.43% 

eMule 70302372 77.32% 

cDonkey 3212 0.004% 

xMule 126601 0.14% 

Shareaza 1289576 1.42% 

aMule 325209 0.36% 

Data extracted from [17]. 

Figure 1.  Example of sub-FSA for the connection establishment in 
eDonkey protocol. The initial/final states are coloured in yellow.  
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protocol operations which have been understood by the 
available sub-FSAs are filtered out of the trace. The 
resulting dataset is used to infer new sub-automata and types 
of messages until all the traffic is in accordance with the 
models. Then, a new phase starts, in which a new dataset is 
recorded, now in a less restrictive environment. The same 
process as in the previous phase is followed until the whole 
set of sub-automata is established (or there is some 
confidence about that). Finally, the partial sub-automata are 
merged according to the observed sequences. The 
probabilistic nature of the FSA can be introduced at any 
point just by considering the relative frequencies of 
appearance.  
 
Data representativeness. In order to build models that have 
a good representativeness of the real behavior of the 
protocols, we need to work with extensive traces taken from 
non-controlled environments. This is done in the last phase 
of our methodology. However, and additional challenge 
appear in this process. In order to use these models for 
intrusion detection, a “clean” training set [14] should be 
used, i.e., data without attacks to train the models. In other 
words, as the system is attempting to model the normal 
behavior of the instances of the protocol, the training set 
must be representative of this normal operation and should 
not contain attack instances. On the other hand, the traffic 
should be real and not simulated, as the purpose is to model 
the normal operation of a real environment with real users 
[15]. As a consequence, if there is no control on the traffic 
from users, it is very difficult to obtain a trace with no attack 
instances. Various approaches to this problem have been 
proposed in the literature [14][16], but they all rely on the 
use of a S-NIDS to filter out the attacks in the captured 
traffic, which can be inaccurate due to false positives and to 
detection errors in the process. 
In our approach, for dealing with such issue, during the non-
controlled environment phase, given the fact that 
preliminary FSAs are built in the first phases, we try to get 
advantage of this information to filter possible attack 
instances that appear in the traces. For this task, we are 
evaluating the use of different non-supervised techniques for 
pattern recognition, e.g., clustering techniques. The rationale 
behind this idea is that protocol procedures or messages that 
appear in the trace will only be incorporated into the model 
if they appear a considerable number of times or they 
sufficiently resemble a known procedure in the model. 

IV. CONCLUSIONS 
This paper presents the general guidelines of a work in 
progress aimed at developing an intrusion detection system 
for detection of anomalies in P2P protocols. It is based on 
the adaption of a technique based on Markov FSA 
previously designed by the authors for detection of 
anomalies in HTTP and DNS protocols.  
The main conclusion from the preliminary work already 
done is that it is feasible the adaptation of the technique to 
the peculiarities that P2P protocols present. The main 
challenges have been identified and some strategies have 

been proposed to solve these problems. We are currently 
evaluating the effectiveness of these solutions.  
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