
Anomaly Detection in P2P Networks Using Markov Modelling

J. Díaz-Verdejo, G. Maciá-Fernández, P. García-Teodoro, J. Nuño-García
Department of Signal Theory, Telematics and Communications – CITIC-UGR
Faculty of Computer Science and Telecommunications - University of Granada

Granada (Spain)
e-mail: jedv@ugr.es, gmacia@ugr.es, pgteodor@ugr.es, piripo-powa@gmail.com

Abstract— The popularity of P2P networks makes them an
attractive target for hackers. Potential vulnerabilities in the
software used in P2P networking represent a big threat for
users and the whole community. To prevent and mitigate the
risks, intrusion detection techniques have been traditionally
applied. In this work in progress, a Markov based technique is
applied to the detection of anomalies in the usage of P2P
protocols. The detector searches for two kinds of anomalies:
those that appear in the structure, grammar and semantics of
each of the messages in the protocol, and those associated to
the sequence of messages (protocol sessions). Previous results
from other protocols, as HTTP and DNS, confirm the
potentialities of the approach.

Keywords: Network and computer security; Intrusion detection;
Anomalous behaviour; P2P networks; Markov modelling

I. INTRODUCTION
Society’s current dependency on communication

networks, especially Internet, together with the increasing
complexity of networks and the associated protocols, makes
it necessary to possess ever more robust and reliable security
techniques to protect services and users. In this context, the
popularity of P2P networks, with millions of computers
connected through networks as eDonkey [1] or BitTorrent
[2], makes them an attractive target for hackers. The ubiquity
of associated software allows potential hackers
compromising many systems if vulnerabilities in the
programs were detected and exploited. For this reason,
security tools are essential to mitigate the associated risks.

One of the tools available for this purpose are the
Intrusion Detection Systems (IDS) [3][4]. First proposed in
the 1980s, they aim at detecting intrusion events, i.e., actions
that might put at risk the security of a given target
environment. Despite its age, some limitations and
challenges still remain, mainly related to the performance
achieved by current IDS technologies [5]. In fact, this is an
active research area at present.

IDS systems are usually categorized in two broad sets
[6], depending on the strategy used for the detection.
Signature-based IDSs (SIDS) try to detect intrusions by
somehow comparing current events with a set of rules that
define known attacks. On the other hand, anomaly-based
IDSs (AIDS) model the normal behavior of a monitored
system and its communications, and trigger an alert every
time a significant deviation is observed in the analyzed
behavior. Both kinds of approaches present advantages and
drawbacks, the most relevant being the greater efficiency of

SIDSs when detecting known attacks and also their inability
to detect new attacks. A more detailed description of SIDS,
AIDS and their capabilities can be found in [6][7][8].

In this work in progress, a new technique for anomaly
detection previously developed by the authors is applied to
P2P systems. The technique, named “Service Specification
and Stochastic Markovian modeling” (S3M) [9][10], has
previously been applied to two widely used protocols like
HTTP and DNS, with satisfactory results. S3M is a mixed
approach that combines the use of specifications and learning
in a stochastic framework, by using probabilistic finite state
automata (FSA).

The proposed technique can model most of the protocols
used in network communications and it can be used at two
levels. Each individual message of the protocol is modeled at
the first level, while the second tries to model the sequences
of messages (i.e., protocol sessions). It is possible to
combine both models to account for potential interactions
among anomalies at messages and sessions. The detection at
the individual messages level is useful for the detection of
attacks targeted at exploiting vulnerabilities in the software,
by using specially crafted messages or ill-formed messages.
On the other hand, the detection at the sequence level can
detect attacks to the protocol itself (flaws in the protocol
design) or attempts to get advantage from it. An example of
the latter could be the detection of worms propagating using
P2P networks by examining the traces of the protocol.

Although it is still at the initial stages, the adaptation of
the technique is promising and challenging. In this paper, we
highlight the main challenges that we are facing during this
research and the strategies followed to solve them. In a first
phase, only eDonkey and BitTorrent networks are
considered.

The rest of the paper is structured as follows. Some
basics of the S3M technique are explained in Section II.
Section III describes the main challenges found in the
adaptation of the technique to P2P protocols, and the
strategies followed for obtaining solutions. Finally, Section
IV summarizes the conclusions of this paper.

II. THE MARKOV-BASED S3M TECHNIQUE
Most network protocols, especially those in the

application layer, present a well defined structure for the
messages and the sequences of messages exchanged by the
involved service entities. This structure is given through
corresponding protocol specifications, and makes it possible
to use formal methods to describe both the way in which

2009 First International Conference on Advances in P2P Systems

978-0-7695-3831-0/09 $26.00 © 2009 IEEE

DOI 10.1109/AP2PS.2009.32

156

each message is generated and the allowed sequences of
messages in the protocol [11]. In these cases, a FSA can be
used to model the normal behaviour of a given protocol. An
example is the well-known FSA describing the behaviour of
the TCP protocol [12].

When these FSAs are used for intrusion detection, a
drawback of this approach is that it only considers the
correctness of the message or sequence of messages, in
terms of compliance with the specifications. The detection is
specification-based. This is usually insufficient, as in many
cases a single or several (a sequence) messages originating
an attack still obey the rules specified by the FSA. Besides,
many protocols are not fully specified, or leave certain
details uncovered. This fact would allow a hacker to attack a
protocol while no violation of its FSA is observed.

A more advanced approach is to build the FSAs as in the
previous method in a first phase, and to evaluate the
likelihood of the instances of the protocol by considering
probabilities associated to the automata, i.e., probabilistic
finite state automata (PFSA). Here, each of the states of the
FSA is viewed as a Markov source emitting symbols. The
symbols may represent either certain fields of a single
protocol message or types of messages, e.g., ACK, HELLO,
etc., depending on the level of description considered. This
is the approach considered in the S3M modelling, which is
briefly described next.

A. S3M modelling basics

S3M makes use of the Markov theory [13] to provide a
production model consisting of a FSA and the associated
probabilities for the observed events or transitions between
states. A given sequence of events, p, can be evaluated by a
model, λ, to provide a probability, P(p|λ), of the events
being generated by the model. From this probability, it is
possible to define a normality score, Ns(p), as

()λ|)(pPpN s =

Assuming that the model properly represents the normal
behavior, Ns(p) can be used to classify the events as either
normal or anomalous, according to a given threshold, θ:

⎩
⎨
⎧ ≥

=
otherwiseanomalous

pNifnormal
pclass s

,
)(,

)(
θ

B. Estimation of the model

In S3M, the model for a protocol is derived from both
the protocol specification and the observation of “normal”
instances of the protocol in a monitored environment. The
model is composed of two main elements: (a) a finite state
automaton (FSA), defined by the states and the links
connecting them (allowed transitions); and (b) a set of
observable events with some probabilities associated with

the different states, events and transitions. First, the
topology of the FSA (states, links or transitions and
final/initial states) is deduced from the specification of the
protocol. Second, the transition probabilities, the set of
events and their respective probabilities are calculated
through a training process in which two complementary
information sources are considered: (i) the observed
legitimate messages or sequences of messages and (ii) the a
priori allowed values of the different message fields. These
sources are used for building a stochastic model that allows,
in a posterior phase, the calculation of the probabilities
P(p|λ). For this purpose, it is necessary to assign observation
probabilities for each event in each state.

The set of possible events in the FSA may be extracted
from a specification or from any other source of
information. In this case, it is hard to estimate the
information related to the probability P(p|λ), since usually
there is only information about if a given event is allowed or
not in each state. For this reason, it is necessary to apply a
training procedure, in which traffic traces containing the
events (messages, sequences of messages and field values
within messages) are analyzed. In this case, the probabilities
are estimated by an accounting procedure, considering the
frequencies of appearance of each event (sequences of
messages or field values within messages). Thus, the
probability of observing an event ek in a state si is estimated
as

1

(|)(|)
(|)

k i
k i M

j ij

count e sp e s
count e s

=

=
∑

where M stands for the total number of events in the state i.

It is advisable to combine both sources of information,

i.e., specifications and traffic traces, as in many real services
it is not feasible to acquire the whole set of events by an
inspection of the specifications. This makes it essential to
perform the training procedure.

Another significant advantage about the use of the
training procedure must be indicated. It allows reviewing
the topology of the FSA, including transition probabilities
according to the observed data. Hence, the set of accepted
transitions could be modified to incorporate that knowledge
provided by the training data in two aspects: the relative
frequency of occurrence of each transition (event), and the
transitions themselves.

Moreover, many protocols are not completely specified,
which results in different implementations, with few minor
differences among them. The use of training data to estimate
the allowed transitions and to assign probability values to
them allows incorporating these differences into the model.
Furthermore, if the set of training data is representative
enough, there would be no need to initially establish the
FSA manually from specifications, as it could be deduced
from the training process. As it will be discussed below, this
is an important advantage for complex protocols, as is the
case in P2P protocols.

157

III. CHALLENGES AND STRATEGIES FOR THE USE OF S3M
IN P2P PROTOCOLS

The aim of this work in progress is to use the S3M

technique for the security analysis of P2P protocols. In this
direction, we are currently working on the adaptation of the
S3M technique in two levels. One model is being developed
for the inner structure of each protocol message, and another
for the sequences of messages (sessions) exchanged during
the different operations of the protocol. In a first phase, we
are considering only protocols used by eMule and
BitTorrent, as they are widely deployed protocols.

Although it could seem that, based on the experience on
HTTP and DNS, S3M could be applied to P2P protocols in
a straightforward way, some new challenges appear when
trying to afford this task, mainly due to the special features
of P2P protocols. Some of these peculiarities and challenges
are described in the following.

Protocol complexity. P2P protocols are more complex than
DNS or HTTP in the sense that they consider many different
types of messages, and the sessions in the protocols usually
involve the exchange of large sequences of messages. As an
example, the specification of the HTTP protocol defines two
types of messages, i.e., request and response, with only
eight possible methods, i.e., GET, POST, HEAD,
OPTIONS, etc. However, in the eMule implementation of
the eDonkey protocol, we have detected more than 12
different kinds of sessions between clients or between a
client and an eMule server. Besides, the number of different
messages in the protocol is higher than 30.
This means that building FSAs for P2P protocols result in
really big automata when compared to those obtained for the
HTTP or DNS protocols. For this reason, we have designed
a methodology that allows the split of the automaton for the
whole protocol in different sub-automata, representing
diverse operations in the protocol. Dealing with these
reduced size sub-automata becomes now a feasible task,
especially if this automata should be trained as a previous
step to a detection phase. As an example, in Fig. 1 we can
see the sub-FSA used for the connection establishment in
the eDonkey protocol.

Lack of strict implementations. As opposed to protocols
like HTTP and DNS, which are well specified in publicly
available documents, P2P protocols tend to be not well
documented, or the specifications lack of information. In
many cases, these specifications have been obtained through
techniques like reverse engineering of the own software that
implements the protocol.
Besides this fact, it is remarkable that even for a same
protocol, e.g., eDonkey, many different implementations
appear (see Table I for implementations of the eDonkey
protocol). Many of them contain certain bugs and others
even consider certain extensions for the own application,
e.g., eMule extensions.

As a consequence of these facts, the process of building
automata for the protocol becomes even harder when
compared with the HTTP or DNS case. For this reason, in
this ongoing work we have designed a methodology for
building the automata as a dynamic (not manual) process.
We are currently evaluating an incremental approach that
builds the sub-automata in several phases. The final
objective is to develop a complete model for the protocol,
starting from smaller sub-automata. In a first phase, a
relatively small subset of sub-FSAs is manually generated
by using one of the available specifications of the protocol,
also identifying in this process a subset of the types of
messages. Then, some traces are captured in a controlled
environment. The available sub-FSAs are verified by using
these traces, and the observed deviations are incorporated
into the models. In this process, we are somehow training
the sub-FSAs, as it is possible to redefine the allowed
transitions between states and the available messages when
doing these transitions. Next, those messages belonging to

TABLE I. PRESENCE OF DIFFERENT IMPLEMENTATIONS FOR THE
EDONKEY PROTOCOL

Implementation
Presence

of observed clients Percentage of
observed clients

eDonkey 12940214 14.23%

Old mldonkey 4708 0.01%

New mldonkey 87941 0.10%

Overnet 5844641 6.43%

eMule 70302372 77.32%

cDonkey 3212 0.004%

xMule 126601 0.14%

Shareaza 1289576 1.42%

aMule 325209 0.36%

Data extracted from [17].

Figure 1. Example of sub-FSA for the connection establishment in
eDonkey protocol. The initial/final states are coloured in yellow.

158

protocol operations which have been understood by the
available sub-FSAs are filtered out of the trace. The
resulting dataset is used to infer new sub-automata and types
of messages until all the traffic is in accordance with the
models. Then, a new phase starts, in which a new dataset is
recorded, now in a less restrictive environment. The same
process as in the previous phase is followed until the whole
set of sub-automata is established (or there is some
confidence about that). Finally, the partial sub-automata are
merged according to the observed sequences. The
probabilistic nature of the FSA can be introduced at any
point just by considering the relative frequencies of
appearance.

Data representativeness. In order to build models that have
a good representativeness of the real behavior of the
protocols, we need to work with extensive traces taken from
non-controlled environments. This is done in the last phase
of our methodology. However, and additional challenge
appear in this process. In order to use these models for
intrusion detection, a “clean” training set [14] should be
used, i.e., data without attacks to train the models. In other
words, as the system is attempting to model the normal
behavior of the instances of the protocol, the training set
must be representative of this normal operation and should
not contain attack instances. On the other hand, the traffic
should be real and not simulated, as the purpose is to model
the normal operation of a real environment with real users
[15]. As a consequence, if there is no control on the traffic
from users, it is very difficult to obtain a trace with no attack
instances. Various approaches to this problem have been
proposed in the literature [14][16], but they all rely on the
use of a S-NIDS to filter out the attacks in the captured
traffic, which can be inaccurate due to false positives and to
detection errors in the process.
In our approach, for dealing with such issue, during the non-
controlled environment phase, given the fact that
preliminary FSAs are built in the first phases, we try to get
advantage of this information to filter possible attack
instances that appear in the traces. For this task, we are
evaluating the use of different non-supervised techniques for
pattern recognition, e.g., clustering techniques. The rationale
behind this idea is that protocol procedures or messages that
appear in the trace will only be incorporated into the model
if they appear a considerable number of times or they
sufficiently resemble a known procedure in the model.

IV. CONCLUSIONS
This paper presents the general guidelines of a work in
progress aimed at developing an intrusion detection system
for detection of anomalies in P2P protocols. It is based on
the adaption of a technique based on Markov FSA
previously designed by the authors for detection of
anomalies in HTTP and DNS protocols.
The main conclusion from the preliminary work already
done is that it is feasible the adaptation of the technique to
the peculiarities that P2P protocols present. The main
challenges have been identified and some strategies have

been proposed to solve these problems. We are currently
evaluating the effectiveness of these solutions.

ACKNOWLEDGMENTS
This work was partially supported by the Spanish National
Research Program of the MEC, under project TEC2008-
06663-C03-02 (70% FEDER funds).

REFERENCES
[1] Y. Kulback, and D. Bickson (2004): The eMule Protocol

Specification. Available at
http://www.cs.huji.ac.il/labs/danss/p2p/resources/emule.pdf

[2] B. Cohen (2008): The BitTorrent Protocol Specification.
Available at http://www.bittorrent.org/beps/bep_0003.html.

[3] J.P. Anderson (1980): “Computer Security Threat Monitoring
and Surveillance”. Technical report, James P Anderson Co.
Fort Washington, Pennsylvania.

[4] E.D. Denning (1987): “An Intrusion-Detection Model”. IEEE
Transactions on Software Engineering, Vol. 13, N. 2; pp. 222-
232.

[5] T.S. Sobh (2006): ”Wired and Wireless Intrusion Detection
System: Classifications, Good Characteristics and State-of-
the-art”. Computer Standards & Interfaces, Vol. 28; pp. 670-
694.

[6] P.N. Tan, M. Steinbach, and V. Kumar (2006): “Introduction
to Data Mining”. Addison-Wesley.

[7] A. Patcha, and J.M. Park (2007): “An Overview of Anomaly
Detection Techniques: Existing Solutions and Latest
Technological Trends”. Computer Networks, Vol. 51; pp.
3448-3470.

[8] P. García-Teodoro, J.E. Díaz-Verdejo, G. Maciá-Fernández,
and E. Vázquez (2009): “Anomaly-based Network Intrusion
Detection: Techniques, Systems and Challenges”. Computers
& Security, Vol. 28; pp. 18-28.

[9] J.M. Estévez-Tapiador, P. García-Teodoro, and J.E. Díaz-
Verdejo (2004): “Measuring Normality in HTTP Traffic for
Anomaly-based Intrusion Detection”. Computer Networks,
Vol. 45, N. 2; pp. 175-193.

[10] J.M. Estévez-Tapiador, P. García-Teodoro, and J.E. Díaz-
Verdejo (2005): “Detection of Web-based Attacks Through
Markovian Protocol Parsing”. 10th Symposium on Computers
and Communications, pp. 457-462.

[11] W.A. Shay (2004): “Understanding Communications and
Networks”. Third ed., Thomson.

[12] Stevens, W.R., Fenner, B., and Rudoff, A.M. (2004). Unix
Network Programming, the sockets networking API, volume
1. Addison Wesley Profesional, 3rd Edition.

[13] W. Feller (1968): “An Introduction to Probability Theory and
its Applications. Vol. I”. Third ed., John Wiley & Sons.

[14] M. Bermúdez-Edo, R. Salazar-Hernández, J.E. Díaz-Verdejo,
and P. García-Teodoro (2006): “Proposals on Assessment
Environments for Anomaly-based Network Intrusion
Detection Systems”. LNCS (Critical Information
Infrastructures Security) 4347; pp. 210-221.

[15] J. McHugh (2000): “Testing Intrusion Detection Systems: a
Critique of the 1998 and 1999 DARPA Intrusion Detection
System Evaluations as Performed by Lincoln Laboratory”.
ACM Transactions on Information and System Security, Vol.
3, N. 4; pp. 262-294.

[16] N. Athanasiades, R. Abler, J. Levine, H. Owen, and G. Riley
(2003): “Intrusion Detection Testing and Benchmarking
Methodologies”. Proc. 1st IEEE International Workshop on
Information Assurance IWIA; pp. 63-72.

[17] http://mldonkey.sourceforge.net/HowManyDonkeys. Last
visited May, 2009.

159

