
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Evaluation of a low-rate DoS attack against
application servers

Gabriel Maciá-Fernández*, Jesús E. Dı́az-Verdejo, Pedro Garcı́a-Teodoro

Department of Signal Theory, Telematics and Communications, E.T.S. Computer and Telecommunications Engineering,

University of Granada, c/ Daniel Saucedo Aranda, s/n 18071 Granada, Spain

a r t i c l e i n f o

Article history:

Received 9 April 2008

Accepted 9 July 2008

Keywords:

Denial of service

Low-rate attack

Network security

Application servers

Intrusion event

a b s t r a c t

In the network security field there is a need to identify new movements and trends that

attackers might adopt, in order to anticipate their attempts with defense and mitigation

techniques. The present study explores new approaches that attackers could use in order

to make denial of service attacks against application servers. We show that it is possible to

launch such attacks by using low-rate traffic directed against servers, and apply the

proposed techniques to defeat a persistent HTTP server. The low-rate feature is highly

beneficial to the attacker for two main reasons: firstly, because the resources needed to

carry out the attack are considerably reduced, easing its execution. Secondly, the attack is

more easily hidden to security mechanisms that rely on the detection of high-rate traffic. In

this paper, a mechanism that allows the attacker to control the attack load in order to

bypass an IDS is contributed. We present the fundamentals of the attack, describing its

strategy and design issues. The performance is also evaluated in both simulated and real

environments. Finally, a study of possible improvement techniques to be used by the

attackers is contributed.

ª 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, the use of application servers connected through

telecommunication networks is commonplace. In a typically

distributed environment, like Internet, many of the services

provided, especially those destined to final users, are imple-

mented upon application servers. Examples of this include

HTTP, mail, and DNS servers (Liu and Albitz, 1993).

A notable feature in the security field, nowadays, is the

importance and seriousness of denial of service attacks (DoS)

(Mirkovic et al., 2004; Jung et al., 2002). These have constituted

an important focus of interest for much recent research

(Mirkovic and Reiher, 2004), because of their harmful effects

and frequency. DoS attacks seek to degrade the availability of

a service by making users’ access difficult or impossible, or by

degrading the quality of service provided. Traditionally, this

attack has been performed by one of two different strategies:

on the one hand, many denial of service attacks exploit

a specific vulnerability, and so are termed DoS vulnerability

attacks. Others try to exhaust a resource in the individual

target or its local network by flooding it with messages in such

a way that the destination cannot handle the burden involved

in their processing. These are called DoS flooding attacks.

These two strategies could be used either separately or

combined. An example of the latter is the well-known TCP

SYN flooding attack (CERT Coordination Center, 1996), one

flooding attack that takes advantage of a vulnerability caused

by the asymmetry of the TCP protocol.

Flooding attacks are usually carried out using high-rate

traffic against the victim. However, the technique used by DoS

* Corresponding author. Tel.: þ34 958 24 23 05; fax: þ34 958 24 08 31.
E-mail addresses: gmacia@ugr.es (G. Maciá-Fernández), jedv@ugr.es (J.E. Dı́az-Verdejo), pgteodor@ugr.es (P. Garcı́a-Teodoro).

ava i lab le at www.sc ienced i rec t . com

journa l homepage : www.e lsev ie r . com/ loca te /cose

0167-4048/$ – see front matter ª 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cose.2008.07.004

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 3 3 5 – 3 5 4

Author's personal copy

attacks has recently evolved in such a way that some current

approaches are able to attack using low-rate traffic (see

Section 2).

In this paper, we analyze a new kind of low-rate DoS

attack. We show that it is possible to use low-rate DoS attack

against generic application servers. In fact, the procedure to

be followed in order to attack a persistent HTTP server is

detailed. The basic strategy is to overload the service queues

of the server, where the requests are temporarily stored, in

such a way that the resulting traffic directed to the server is

low-rate. For this, the attacker aims to predict the instants at

which every new position is freed in the queues and manages

to insert a new request inside it.

Due to the extended use of application servers in Internet,

these attacks represent a great threat. In addition, the use of

low-rate traffic has two main benefits for the attacker. Firstly,

the attack could be launched with fewer resources, simpli-

fying the zombie recruitment process in a distributed DoS

attack. Secondly, it facilitates concealment of the attack, as

many security systems (normally IDS (Axelsson, 2000)) rely on

the detection of traffic rates that exceed a given threshold,

normally configured for a high-rate traffic in order to reduce

false positives (Siris and Papagalou, 2006; Huang and Pullen,

2001; Gil and Poleto, 2001; Feinstein et al., 2003; Wang et al.,

2002; Li, 2006, 2004; Scherrer et al., 2007; Kuzmanovic and

Knightly, 2006). In this paper, we show how the load generated

by the attack could be dynamically adjusted in order to bypass

a load detection threshold for DoS in an IDS.

In summary, the aim of this paper is to illustrate the

fundamentals of this low-rate attack against application

servers. Our objective is to explore its viability and to describe

its behaviour in order to motivate and promote the develop-

ment of defense techniques against it. Worrying results are

obtained regarding the simplicity of this type of attack and its

effectiveness.

The structure of the paper is as follows: first, a review on

related work is done. Second, a model of the scenario in which

the attack takes place is presented in Section 3. Section 4

discusses the vulnerabilities in the server that could be

exploited, fundamentals of the attack and design issues.

Then, Section 5 contributes an analysis of the performance of

the attack in both simulated and real scenarios. Section 6

evaluates some techniques that the attacker might use in

order to improve the attack. Finally, some conclusions are

drawn and suggestions are made for further study.

2. Related work

The first proposed work in the field of low-rate DoS attacks

was the attack denounced by Kuzmanovic et al. (Kuzmanovic

and Knightly, 2006) against TCP flows. This attack sends

a burst of well-timed packets, creating packet loss and incre-

menting the retransmission timeout for certain TCP flows.

The use of low-rate traffic to carry out DoS attacks against

applications has also been studied by several research groups.

First, Guirguis et al. described the reduction of quality (RoQ)

attacks, which try to degrade the performance by disrupting

the feedback mechanism of a control system, with a small

amount of attack traffic. The authors have studied these

attacks in several scenarios, like bottleneck queues with

Active Queue Management (AQM) employing Random Early

Detection (RED) (Guirguis et al., 2004), internet end systems

(Guirguis et al., 2005), dynamic load balancers (Guirguis et al.,

2007a) and content adaptation controllers (Guirguis et al.,

2007b). The main difference between these mechanisms and

the proposal of this paper is that they get advantage of the

transient mechanisms of the systems, whilst the attack

described in this paper uses an estimation of the service time

for the requests employed by an application server. Then, we

claim that the deployment of mechanisms for avoiding tran-

sient behaviour exploitations (RoQ attacks), as those proposed

in Shevtekar and Ansari (2008) and Li et al. (2006) is not enough

for protecting end systems against low-rate DoS attacks.

Moreover, Chan et al. proposed an scheme for striking low-

rate DoS attacks against applications in Internet that utilize

periodic updates (Chan et al., 2006). This mechanism depends

on the use of periodic updates in a relative manner by the

server. The attack proposed in this paper targets generic

application servers, and is not restricted to the periodic

updates scenario only.

Finally, in a previous work (Maciá-Fernández et al., 2007),

we presented an approach that aims at denying the service of

an iterative server with low-rate. This approach uses the

estimation of the inter-output time in the server to strike the

attack. The work presented here is an extension of this attack

to concurrent servers. A typical design for an application

server in Internet follows a concurrent architecture. It enables

to process requests in such a way that the service seems to be

provided to all the clients at the same time (really or appar-

ently), i.e., the different requests are served in a parallel way.

This feature is usually implemented either by using several

CPUs or machines, or by spawning threads or processes in one

or more machines. In the latter case, each one of these threads

or processes executes the corresponding code for providing

the service. The complexity of this architecture makes it

necessary, for the attacker, to refine the mechanisms that

allow to strike a low-rate attack. We show here how this is still

possible.

3. Scenario modelling and server basics

As a previous step in developing the idea behind the attack, it

is necessary to model the scenario in which it is to take place,

as shown in Fig. 1. In a normal situation, legitimate users try to

access a specific service located in a server. For this purpose,

they send one or several requests that traverse a network to

reach the server. For the sake of simplicity, we consider that

there is neither congestion nor losses of messages within the

network.

Normally, it is difficult to determine the statistical pattern

of users’ incoming traffic. Some studies have experimentally

deduced specific statistical distributions for this traffic,

depending on its nature. In the case of HTTP requests sent to

a web server, heavy tailed distributions (Liu et al., 2001) seem

accurate. However, these distributions model the behaviour of

user traffic for normal operation by the server. As we are

interested in a scenario in which the server is victim of a DoS

attack, users’ behaviour cannot be represented through these

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 3 3 5 – 3 5 4336

Author's personal copy

models. For this reason, we make the traditional assumption

that the traffic generated by the users follows a Poisson

distribution. This means that the inter-arrival time Ta for the

requests coming from all legitimate users can be modelled by

the exponential distribution probability function (Song, 2004).

PðTa ¼ tÞ ¼ l$e�lt (1)

where l is the mean inter-arrival rate of the user requests.

In our study scenario, an attacker tries to afflict a low-rate

DoS attack on the server, which is located somewhere in the

network. The attack could be launched in a distributed way

(DDoS) by means of a typical multilayer structure of indirec-

tion (Mirkovic et al., 2004), or simply from a single machine

(DoS). For the purposes of our study, the strategy chosen by

the attacker is not a relevant factor.

The time involved for a request to reach the server from the

attacker, and for its corresponding answer to arrive back is the

round trip time, RTT. Due to the usual variable conditions in

the network, RTT will be considered a random variable. In

Elteto and Molnar (1999), a truncated normal distribution is

proposed for this time, and so for the sake of simplicity, we

will consider a normal variable distribution.

PðRTT ¼ tÞ ¼ NðRTT;var½RTT�Þ ¼ 1ffi
2p$var½RTT�

p ,e�
ðt�RTTÞ2
2var½RTT� (2)

The server is a principal element in the scenario. Its design

could make use of either an iterative or a concurrent

approach, the iterative being a special case of the concurrent.

As previously mentioned, the distinctive characteristic of

a concurrent server is its capability of serving different

requests in parallel. This could be done by using either

several machines or CPUs (real concurrency), or by just

a single CPU (virtual concurrency). In the latter case, two

main approaches may be adopted for its implementation:

first, the parent process of the server spawns several child

processes, and each one takes charge of a request. The

second possibility is to have only one process with several

running threads. Here, each thread is in charge of processing

a request. Obviously, although at any specific instant t the

processor is engaged in processing only one of the requests,

the scheduler assigns a quantum of processing time to every

process or thread, which makes it seem as if all the requests

are being processed in parallel (virtual concurrency). Hence-

forth, we shall term the different processes or threads that

execute the processing of requests in the concurrent server

processing elements. As remarked previously, an iterative

server could be considered as a special case of a concurrent

architecture in which only one processing element exists and,

therefore, the processing of the requests is done sequentially

rather than in parallel.

The model proposed for the server is depicted in Fig. 2. The

server could be composed of either a single machine or

implemented as M replicas in different machines (a farm of

servers). In the latter case, a load balancer is typically in

charge of redirecting the incoming requests to the appropriate

machine according to a predefined policy (Zaki et al., 1996;

Hofmann and Beaumont, 2005).

As can be seen, the requests arriving at the server and

redirected by the load balancer are queued up within

a machine in a finite queue called service queue, whenever at

least one free position is available. If there is no space left in

the queue, the requests are discarded. Then, either an over-

flow message (MO) or a specific event could be raised (a log, an

alarm, etc.), or even nothing could happen. Obviously, if the

load balancer takes into account the occupation of the service

queues of the different machines, this event will only occur

when the positions in all the service queues are occupied. We

then say that the server is in the saturation state. Moreover, we

use the term seizure to indicate the capture of a position in the

service queue.

At the same time as incoming requests are being queued

up, in each machine i ˛ [1, M], Ni
s different processing

elements are ready to extract the requests from the queue and

process them. The total number of processing elements

present in a server is denoted by Ns ¼
PM

i Ni
s.

Whenever a processing element becomes free, a request in

the service queue is extracted and passed to a module in

charge of its processing, called service module. The request

selected depends on the chosen queue discipline. For our

purposes, it is irrelevant which queue discipline is applied,

and so an FIFO discipline is assumed.

user

user
user

attacker

attacker

server

Fig. 1 – Study scenario.

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 3 3 5 – 3 5 4 337

Author's personal copy

A request j is served during a service time, ti;j
s , that depends

on the service module i, after which an answer is raised and

sent to the corresponding user. Henceforth we will refer to

this answer as an output.

The service time can be considered a random variable, Ts,

whose values depend on several parameters. One of the most

important is the amount of time that the request itself needs

to be processed. Several studies have shown that the service

time, when considering variations in the size of HTTP

requests, can be modelled by heavy tailed distributions (Liu

et al., 2001). Thus, if we consider a special case, in which all

the incoming requests in the server are identical, a determin-

istic and fixed service time is to be expected. However, even in

this case the service time is also affected by other parameters,

like CPU load, the amount of available memory, the number of

processes running in the same machine, the amount of

interruptions in the host, etc. This means that, even when all

the requests are identical, we should expect slight variations

in service time values. As many variables influence this vari-

ation, by using the central limit theorem (Song, 2004), the

distribution of the service time, f(Ts), when the requests are

equal, could be approximated by a normal variable.

fðTsÞ ¼ N
�
Ts;var½Ts�

�
(3)

The case in which all the requests are identical is of impor-

tance, as this characterization of the service time is used in

the attack design. Note that this statement does not mean that

the attacker is restricted to use always identical requests, as

we will discuss later.

4. Low-rate DoS attack specification

Having described a typical service scenario, the fundamentals

for carrying out a low-rate DoS attack against application

servers are presented in the following. First, the basic strategy

to be followed is outlined. Next, the possible vulnerabilities to

be exploited in the server are analyzed. Finally, the design of

the proposed attack is discussed.

4.1. Basic strategy for carrying out the attack

The strategy to be followed by a low-rate DoS attack to cause

unavailability in a target server consists in moving it to the

saturation state. Thus, all the service queues will have no free

positions and any new arriving request will be discarded,

therefore causing a DoS.

The attacker will try to make the server process only his

own requests by filling the service queues only with attack

messages. Let us suppose that the attacker somehow

manages to make the server reach the saturation state. In this

situation, whenever a position is freed in any of the service

queues, the attacker will try to seize it before any other user

does. Thus, the aim of the attacker will be to achieve the

maximum number of seizures.

Observation of the server model shows that a new position

in a service queue is issued whenever a processing element

produces the answer to a request, sends it to its remitter and

extracts a new request from the corresponding service queue.

There is a clear relation between the instant at which an

output is raised in the server and that when a free position

appears.

The attacker, in order to seize as many positions as

possible, could follow the traditional strategy of flooding the

server with requests at a high-rate, thus maximizing the

probability of seizing the positions. However, it is desirable for

the attacker to use low-rate traffic instead, mainly because

this allows the attack to be carried out with many fewer

resources, and also because it could thus bypass security

Service

queue 1

Service

modul e1

MO

Service

queue M

Request j
arrival

Service

modul eM

MO

output

Load

balancer

Service

module 1
output

Processing elements (Ns
1)

Service time (t
s

1,j
)

Processing elements (Ns
m)

Service time (t
s

m,j
)

Service

module M

·

·

·

Machine 1

Machine M

Load

balancer

Fig. 2 – Model for the server.

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 3 3 5 – 3 5 4338

Author's personal copy

mechanisms that rely on the statistical detection of high-rate

traffic (Siris and Papagalou, 2006; Huang and Pullen, 2001; Gil

and Poleto, 2001).

In order to reduce the rate of traffic sent to the server, the

attacker could try to send attack requests in such a way that

they arrive at the server only around the forecast instants at

which the outputs take place, and not continually; if this is

achieved, then the traffic is low-rate. Of course, the term low-

rate is relative, because it depends on the rate used for

comparison. For the purposes of our study, a rate is consid-

ered low if it is able to bypass an IDS system based on the

detection of abnormal traffic rates. The main issue here is

that, even though an IDS monitoring incoming traffic does not

consider a given increase in some flows to constitute an

attack, a suitable low-rate could achieve a DoS at the appli-

cation level.

Two important aspects should be indicated in this attack

strategy. First, even when a server is under a DoS attack, it is

not really unavailable. The problem is that, while it is

constantly processing attack requests, the user has the

impression that the server is down. It could be said that the

server is suffering a ‘‘partial DoS’’. Second, there is no need for

the attack requests to be specially crafted. This means that the

server will not appreciate the difference between the attack

requests and others that are legitimate and will therefore

process them normally.

4.2. Analysis of server vulnerabilities

In order to follow the attack strategy presented above, it is

necessary to find a vulnerability in the server that makes it

possible to forecast the instants at which the outputs are

generated.

First, consider a server in a saturation state with identical

requests placed in its service queues by an attacker. Let us

also suppose that this attacker discovers the time invested

in serving any of these identical requests (service time). In

this situation, whenever the attacker observes the genera-

tion of an output (by receiving the response after it travels

across the network), he could conclude that, after having

waited the known service time, another output is going to

be generated. Obviously, this is true because the next

request processed by the processing element involves the

same known service time.

An important issue in this process is the fact that the

attacker must guess the service time for a specific request. In

some cases, this could be done by simply sending these

requests to the server and observing the elapsed time for

receiving the response, d. In this delay, three contributions

appear: first, the round trip time RTT between the attacker and

the server, which could be estimated and approximated by its

mean value, RTT. Second, the time that the request spends in

the service queue, that is, the queue time, tq. This time

depends on the number of requests located in the queue at the

time the request arrives, their associated service times, and

the number of processing elements in the server. Finally,

also the service time, ts, which depends on the own request

and the server load and dynamics, contributes to d. That is,

d ¼ RTTþ tq þ ts (4)

The parameter ts is generically unknown in our scenario. To

obtain it, as d and RTT are observable variables, the value of

tq should be determined. At first sight, it is not possible for

the attacker to predict the value of tq so, to solve the

problem, the only way is to eliminate this contribution. This

could be done by sending probe requests when the server is

relatively idle. Obviously, it is a difficult task for the attacker

to determine the instant at which the occupation is low in

the server. Only by intelligently choosing the instants of the

scanning could this task succeed, and in many cases it will

not be possible. Assuming that the attacker does succeed, in

this situation, we would expect not to find requests in the

selected service queue for the attack request and, thus, the

value of tq will be zero. Obviously, this probing activity has to

be done carefully by the attacker in order to obtain an

accurate value for the service time. The samples of ts will

conform the distribution of Ts – Expression (3).

Once Ts is estimated by following the above procedure, the

attacker could use the knowledge of the service time to predict

the instants at which the outputs are generated in the server.

Note that, using this technique, another drawback arises. In

effect, if we consider a situation in which not all the requests

belong to the attacker, the prediction of some outputs will

sometimes fail due to the fact that not all the requests involve

the same service time. Indeed, as the requests that belong to

legitimate users do not generate a response that is sent to the

attacker, the number of correctly forecast outputs will be

reduced to the number of attack requests placed in the service

queues. As we will show later, the attack design will have to

consider this aspect.

On the other hand, we have explored other types of

vulnerabilities that allow to apply other strategies for the

prediction of the instants of occurrence of the outputs,

obtaining the worrying conclusion that the service time could

simply be inferred, in some cases, from the behaviour of the

server itself. An example can illustrate this.

Consider a media server that plays a publicity video on

demand when a user asks for it. The number of licenses for

simultaneous playbacks of the video is limited (limited

number of positions in the service queue). The vulnerability

consists in the fact that the video always lasts the same time.

Thus, if anyone asks for its playback, it is only necessary to

observe the beginning of the reproduction to estimate the

instant at which it will finish (output). Thereby, a license could

be permanently seized by repeating the requests just when

the license is released (attack strategy). If the attacker

manages to get all the licenses with this strategy, the DoS is

achieved. Note that the attack would be even possible in the

case the server queues up license requests, whenever the size

of pending license request is finite. Moreover, even if the

server deploys defense techniques such as allowing only one

license per IP address, the attacker needs only to recruit as

many zombies as the number of possible licenses in the

server.

The difference between these cases and those in which the

service time has to be estimated by probing the server consists

in the fact that the attacker knows the instant at which the

service time begins – in the media server example, when the

playback starts. This has two benefits. First, the procedure for

obtaining the value of the service time is simpler, because

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 3 3 5 – 3 5 4 339

Author's personal copy

there is no need to have non-occupied service queues during

the probing. Second, the errors generated by the presence of

requests in the service queue that do not belong to the

attacker disappear. In effect, whenever the attacker knows the

service start time, this always has the same value. If other

user’s present requests, the attacker will not even notice the

beginning of the service time.

Finally, we have found that, for some commercial and non-

commercial concurrent servers, this second type of vulnera-

bility could be found. A meaningful example is the case of

a web server running the HTTP 1.1 protocol with the persistent

feature. We will present this case study in the following.

4.2.1. Case study: the persistent HTTP server
The persistent connection feature, which appears in the HTTP

1.1 specification (Fielding et al., 1997), allows a web server to

maintain a connection alive for a specified time interval after

an HTTP request has been served. This feature is used to

reduce the traffic load when several requests are sent to the

server on the same connection for a short period of time.

When using a persistent connection, the communication

between the client and the server is as follows. Before sending

the first request, a connection is established with the server;

then the request is sent and, after that, the server waits for

a fixed amount of time before closing the connection (the

persistent connection timeout1). If a new request arrives on

this connection before the expiry of the mentioned timer, the

timer is reset again. This mechanism is repeated a fixed

number of times, after which the connection will be closed.

In this scenario, it is quite easy for an attacker to guess the

value of the persistent connection timeout, tout, with just

a few tests. Using this knowledge, the process that an attacker

could follow to forecast the instant of an output is the

following (see Fig. 3):

(1) The attacker establishes a connection with the server. This

connection occupies a position in the service queue.

(2) The attacker sends a request (HTTP request) to the server

on the connection established.

(3) The request is received at t0 and placed in the service

queue for a queue time awaiting its turn to enter the

service module.

(4) After tq, that is, at t0þ tq, a processing element extracts the

request from the service queue, processes it and sends an

answer (HTTP response) to the attacker.

(5) The persistent connection timeout is scheduled in the

processing element. When the timeout, tout, expires, the

connection is closed. As we are considering in this

example that a connection in the system occupies a posi-

tion, the occurrence of this event is similar to raising an

output in our model.

In this process, to predict the instant at which an output is

raised, toutput, the attacker only has to record the instant of the

reception of the HTTP response, trec, and to consider the

known value for tout. Moreover, as discussed in Section 3, the

service time – tout in this case – should be considered a random

variable, Tout, following Expression (3). That is, toutput also

becomes a random variable, Toutput, which corresponds to

Toutput ¼ N

�
trec �

RTT
2
þ Tout;var½Tout� þ var

�
RTT

2

��
(5)

where, for the sake of simplicity, we consider that the time

invested by the answer in travelling from the server to the

attacker is RTT=2. As we will see later, this assumption does

not affect the attack results.

This example illustrates how, in a widely used server, the

existence of a temporal deterministic behaviour constitutes

a vulnerability that allows a potential attacker to forecast the

instants of the outputs and, thus, to launch a low-rate DoS

attack.

4.3. Design of the attack

At this point it is clear that the aim of the attacker is to keep

seizing all the free positions in the service queues as they

appears. For this task, the instants at which the positions are

freed are forecast through the mechanisms introduced in

Section 4.2. Once these instants are predicted, the attacker

tries to seize the freed positions before any legitimate user

does so.

For this reason, the attacker sends attack packets to the

server so that they arrive just after the outputs occur.

Considering that the value of the predicted instants for every

output is a random variable – Expression (5) –, more than one

request (arriving around Toutput) should be used, in order to

raise the probability of seizing the position freed by an output.

This set of requests constitutes a part of the ‘in advance’

a basic attack period, which will be detailed in the following.

4.3.1. The basic attack period
For every output that is forecast, the attacker will launch

a basic attack period, that is an ON/OFF waveform, composed of

SERVERATTACKER

(1) Connection
establishment

(6) Connection release

(5) Fixed value
timeout, tout

A free position
appears in the
service queue,

toutput

A position
is seized in the
service queue

The request
enters the

service queue

(3) Queue waiting time, tq

Processing time, ts

Entrance to the
service module

trec

Fig. 3 – Process to forecast the instant at which an output is

raised in the server.

1 In an Apache 2.0 server, the directive KeepAliveTimeout
controls this timeout.

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 3 3 5 – 3 5 4340

Author's personal copy

an inactivity phase followed by another of activity (requests

sending). It is defined by these parameters.

� Interval (D): the period of time between the sending of two

consecutive requests during the activity interval.

� Ontime phase (tontime): the activity interval during which an

attempt to seize a freed position in the service queues is

made by emitting requests at a rate given by 1/D. Thus,

tontime¼D$(nr� 1), where nr is the chosen number of attack

requests to be sent to the server.

� Offtime phase (tofftime): the inactivity interval before ontime in

the basic attack period, and during which there is no

transmission of attack requests.

� Start Of the Attack period (SOA): the instant at which the

offtime phase starts. This parameter defines the beginning

of the basic attack period.

In order to synchronize the arrival of the ontime phase of

the basic attack period around the mean value of the predicted

instant of the output in the server, Toutput, this condition must

be met.

tofftime ¼ Toutput �
RTT

2
� tontime

2
(6)

where, for simplicity, we consider that the time needed for

a request to travel from the attacker to the server is RTT=2.

The above expression can be particularized for any server

case. Specifically, for the persistent HTTP server, the value

of Toutput can be substituted by using Expression (5), thus

leading to

tofftime ¼ trec � RTTþ Tout �
tontime

2
(7)

As is logical, the attacker should adjust the parameters of the

basic attack period, that is, tofftime, tontime and D, to maximize

the probability of seizing the position and to minimize the rate

of traffic sent to the server.

In summary, during the execution of the attack, for every

output whose instant of occurrence is forecast, a basic attack

period is scheduled trying to seize the corresponding free

position. This behaviour is complemented by an additional

aspect: whenever an output arrives at the attacker, another

attack request is sent to the server. The goal of this

methodology is to reduce the time during which the position

is available, especially when the ontime phase has not suc-

ceeded in seizing it.

In conclusion, the total number of attack requests sent to

the server due to the execution of a basic attack period and

also to the response mechanism triggered at the reception of

an output from the server is depicted in Fig. 4. Note that the

arrival of the attack requests at the server is centered around

Toutput.

4.3.2. Software architecture design for the attack
One more aspect needed for implementing the attack is to

define how the attack periods are scheduled in time in order to

seize as many positions as possible. One strategy could

consist in having only one process which linearly schedules

the basic attack periods as the instants of the outputs are

predicted. However, it must be taken into account that it could

be difficult to implement this strategy using only one process

on the attacker’s side, mainly because the outputs may occur

very close in time, which would produce an overlap of the

ontime phases associated to these outputs. For this reason, the

implementation of the only-one-process architecture for the

malware would become complicated and, even worse, not

scalable.

This reasoning has led us to propose a multithreaded

architecture for the malware, composed of a number of attack

threads specified as a design parameter, Na. Each of them is in

charge of seizing one position in the service queue. For this

purpose, these attack threads have two responsibilities: (a) to

forecast the instant at which an output will be generated, and

(b) to execute the basic attack periods centered around the

predicted instants. At first sight, it is to be expected that the

attacker will have to tune the value of the parameter Na in

accordance with the total number of positions in the service

queues at the server. However, it is difficult for the attacker to

estimate this number of positions, and so an alternative

procedure is presented below.

4.3.3. The basic seizure following strategy
Whenever an attack thread executes a basic attack period to

seize one position in any service queue of the server, the result

of this execution is either a success, that is, the position is

seized, or a failure.

Server’s side

Attacker’s side

SOA
tofftime time

Output Attack request as a
response to the
output reception

attack
requests

tontime

Toutput

Fig. 4 – Diagram for the execution of a basic attack period and the response mechanism at the reception of an output.

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 3 3 5 – 3 5 4 341

Author's personal copy

Possible causes for a failure in the seizure of a free position

include:

� A legitimate user has seized the position, leading to the

attacker’s requests being rejected. Note that this situation is

more likely to be reached when the deviations in the esti-

mation of the output instant are high, or when a low

number of attack requests is used in the ontime phase.

� Another attack thread has seized the position. As the ontime

phase may involve sending several attack requests, two or

more positions could be seized by a single attack thread,

thus leading other attack threads to experiment a failure in

their goal.

We should now define the behaviour to be followed by an

attack thread in each case, success or failure, in the seizure of

a position. Henceforth, we shall term this behaviour a seizure

following strategy. First, we present the basic seizure following

strategy, and then, in Section 6, some proposals will be sug-

gested for improving this strategy.

To estimate the instant of an output, an attack thread

needs first to have situated a request in a service queue,

because the procedure for the estimation is triggered by the

reception of a response from the server. Thus, in the case of

a successful seizure of a position, the basic seizure following

strategy establishes that the attack thread should behave

normally, estimating a future output instant and executing

a basic attack period.

On the other hand, in the case of a failure to seize

a position, the attack thread will be incapable of forecasting

the instant of another output, and the basic seizure

following strategy establishes that the thread must ‘‘blindly’’

try to seize a position. This is done by sending attack

requests at a rate 1/Dr, where Dr is a new design parameter

of the attack, called recovery interval. It is expected that the

lower the value chosen for Dr, the more likely it is that the

attack thread will recover a position in a service queue.

However, this will increase the traffic rate of the attack. A

compromise between these two factors must be adopted. In

Section 6, some mechanisms to make this adjustment are

proposed.

5. Performance analysis for the attack

We are interested in testing the performance of the proposed

attack in terms of two main characteristics: first, the efficiency

achieved by the attack, measured as the DoS degree afflicted

on the server, and second, the amount of traffic needed to

achieve a specified efficiency.

In order to measure the traffic rate needed to carry out the

DoS attack, we define the overhead of the attack (O), as the

percentage ratio between the traffic rate generated by the

intruder and the maximum traffic rate accepted by the server.

It is important to note that, although O measures the relative

traffic rate involved in the attack, this parameter does not

represent the congestion level in the server, due to the fact

that the latter depends not only on the traffic coming from the

intruder but also on legitimate users’ requests.

To measure the degree of DoS achieved by the attack, we

define the availability (A) as the percentage ratio between the

number of user requests served by the server, and the total

number of requests sent by the legitimate users. This

parameter gives an idea of the service level experienced by the

legitimate users.

Although A is a good indicator of the DoS attack efficiency,

it depends on the traffic pattern of the legitimate users.

Alternatively, we could consider a measure that indicates the

efficiency of an attack independently of the user traffic

pattern. This hypothetical indicator would enable a compar-

ison between different design strategies and would make it

easier to take a decision about the values to adopt for the

attack parameters. With this fact in mind, we define, in

a scenario free of user traffic, the percentage of available time

(TAV), as the average time, in percentage terms, during which

at least one free queue position in the server is available. Note

that the probability of a legitimate user seizing a queue posi-

tion will be directly proportional to the value of TAV.

One aim of the attack, in terms of the indicators defined,

should be to minimize user’s perception of the availability of

the service (A). This task is similar to that of minimizing the

percentage of available time in the server, which reduces the

probability of a legitimate user seizing a position in the queue.

10
.1

%

8.
5% 9.

2%

4.
3%

7.
8% 8.

2%

9.
8%

9.
0%

4.
6%

6.
9%

6.
1%

8.
2% 9.

2%

11
.1

%

4.
1%

6.
9%

10
.6

%

9.
8% 10

.3
%

8.
3%

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Scenario

L
o

w
e

s
t

A

o

b
t
a

i
n

e
d

Fig. 5 – Best efficiency of the attack (lowest A) obtained for 20 different scenarios.

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 3 3 5 – 3 5 4342

Author's personal copy

Additionally, the attack should also minimize its overhead (O),

thus making it less detectable by intrusion detection systems

and requiring fewer resources in order to be executed. Obvi-

ously, it is expected that a reduction in the percentage of

available time will necessarily increase the overhead of the

attack, and vice versa.

5.1. Attack capabilities

According to the previously defined performance indicators,

A, TAV and O, the attack capabilities have been tested. We will

describe in the following the experiments made for doing this.

They have been carried out both in a simulation platform and

in real environments.

5.1.1. Simulation results
In the first place, we evaluated the performance of the attack

in a simulated environment in which a low-rate DoS attack

module, as well as legitimate user traffic and a server were

implemented using Network Simulator 2.

Several experiments were carried out to test the efficiency

and the traffic rate needed for the attack. Regarding effi-

ciency, in terms of A, the attack was tested against 20

different server configurations, with a number of processing

elements in the range 4�Ns� 50, and for each one of these

configurations, several settings of the attack parameters were

selected: tontime ˛ [0.1 s, 0.6 s], D ˛ [0.1 s, 0.4 s], Dr ˛ [1 s, 5 s] and

Na equal to the number of service queue positions in the

server. The user traffic was tuned, on the one hand, with

a rate nearly equal to the server’s processing rate, and on the

other, with a very low one (around 5% of the server capacity).

The best efficiency results obtained for each scenario are

shown in Fig. 5. In all the scenarios, the value obtained for the

overhead was below 280%, that is, 2.8 times higher than the

server capacity. Note that even the worst value obtained,

11.1% (that is, for every 10 requests sent by the users, only

one is served), represents a very high level of efficiency.

We also carried out some experiments aimed at testing the

flexibility of the attack. These consisted in choosing a large

number of different scenarios and configurations, in order to

test the attacker’s possibilities of achieving a compromise

between efficiency and traffic rate. The values for O and A

obtained for 18 possible attack configurations in the same

scenario are shown in Fig. 6. The scenario considered is

characterized by the values Ns¼ 4, RTT ¼ 0:1s, and

Ts ¼ Nð12s;0:1Þ. As expected, a higher efficiency (lowest A) is

obtained at the cost of higher traffic rates. Note that, for the

attacker, many configurations are eligible and, what is more

worrying, high DoS levels (around A¼ 10%) are attainable in

some cases with only O¼ 200%.

These results lead us to conclude that the attacker has

many possibilities of adjusting the attack parameters to

obtain many possible combinations of efficiency and over-

head. Regrettably, this makes it possible to tune the attack

parameters in order to bypass possible security mechanisms

while a DoS is being made, or to carry out the attack with

a lower level of resources if needed.

In addition, we are interested in determining whether the

proposed attack strategy produces an improvement for the

DoS attack compared with a similar rate of requests

randomly2 sent (i.e., with no intelligence) to the server. For

this purpose, some experiments were carried out to compare

the efficiency and the traffic rate involved in the two strategies

(random and intelligent). Our first strategy was to compare the

efficiency values when the overhead in the two strategies is

equal. However, there is a drawback to this approach, as it is

not easy to control the resulting overhead once the parame-

ters of the attack have been selected. For this reason, we

always compared the two strategies by making the overhead

lower in the intelligent strategy.

Fig. 7 shows the comparison for four different scenarios.

For each one, both the values of A and O are represented for

the ‘‘intelligent’’ attack as well as for a random flood of

requests. Note that, for all the scenarios, the efficiency

obtained in the intelligent attack is considerably higher – 35%

in scenario 4, and 12% in the worst case (scenario 3) –, even

when the overhead involved is lower. This confirms that the

attack strategy presented in this paper represents a notable

improvement over high-rate random flooding strategies.

5.1.2. Real environment results
A prototype that executes the low-rate DoS attack was

implemented in a Win32 environment in order to test its

feasibility. The attack was carried out against an Apache 2.0.52

web server (with the persistent connections feature enabled),

hosted in a machine with the Windows XP SP2 operating

system. Although the server model is general and considers

a farm of servers, we assume that a testing scenario with only

one server is enough to extract general conclusions about the

attack behaviour. The server was configured with the directive

KeepAliveTimeout¼ 10 s,3 which corresponds to the parameter

Tout in our model. The directive ThreadsPerChild, which repre-

sents the number of threads for the processing of requests in

the server, Ns, was set in a range from 12 to 50.

The scenarios for the different experiments are analogous

to those presented in Section 3. The traffic from legitimate

users was synthetically generated following a Poisson distri-

bution within a range of inter-arrival time values, Ta. Traces

for the legitimate users as well as for the intruder sides were

0%

10%

20%

30%

40%
50%

60%

70%

80%

90%

0% 50% 100% 150% 200% 250% 300%

Overhead, O

A
v
a
i
l
a
b

i
l
i
t
y
,

A

Fig. 6 – Possible attack configurations: A vs O.

2 Following a Poisson arrivals’ distribution.
3 The value for this parameter is 15 s by default in the Apache

configuration file. It was reduced by 5 s to speed up the experi-
ments, as the expected results are the same with both values.

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 3 3 5 – 3 5 4 343

Author's personal copy

issued in order to obtain the data needed to calculate the

attack indicators.

Table 1 shows the results obtained from eight different

scenarios taken from the set of experiments. For each

different attack configuration, both simulation and real envi-

ronment values for A and O were obtained. Note that in the

results there is a slight variation between the simulation and

the real values, with even better results being obtained in

some cases for the real environment than for the simulated

one. These variations are mainly due to deviations in the

estimation of the parameters for the statistical distributions of

RTT and the service time. Nevertheless, the results obtained

in the real environment confirm the worrying conclusions

derived from the simulation, that is, the proposed low-rate

attack can achieve very high efficiency levels and, moreover,

its implementation is totally feasible.

6. Improving the attack strategy

As shown above, not only is it possible to execute a low-rate

DoS attack against servers but also it could achieve a very high

level of efficiency. Although this is true, there are also some

improvements that the attacker could adopt in order to obtain

even better results. In the following, some of these improve-

ments are described:

� Attack distribution:

The attacker can decide to execute the attack in a centralized

manner (DoS) or by several distributed attack machines

(DDoS). In the latter case, the benefits are clear (Geng and

Whinston, 2000). The main disadvantages of distributing of

the attack are the need to recruit a considerable number of

zombies and to establish communication mechanisms

between each of them and also with the attacker.

� Use of spoofed addresses:

The attack mechanism implies that the attacker must receive

responses from the server in order to forecast the instants at

which the outputs occur. This does not mean that the spoofing

technique is not allowed. In fact, spoofing can be used if the

range of spoofed addresses belongs to the same attacker

machine network. Thus, this machine could sniff the packets

sent to the spoofed address. Particularly when the local area

network range of addresses is wide, the use of this technique

will help the attacker to conceal his location.

� Attack requests diversification:

The general mechanism for exploiting the vulnerability

consists in sending identical requests to it. However, we have

shown that, in some cases, the vulnerability consists of

a timing scheme that does not depend on the nature of the

request made to the server. This is the case of the persistent

HTTP server, in which the value of the persistent connection

timeout does not depend on the HTTP request, but is always

the same. In these cases, it is advisable for the attacker to

Table 1 – Comparison between real and simulated
environment results in the attack against a concurrent
server

E (%) UPP (%)

Simulated 86.73 35.91

Real 81.74 36.14

Simulated 84.23 46.76

Real 74.57 48.22

Simulated 113.35 36.71

Real 109.00 38.01

Simulated 268.47 12.31

Real 269.82 12.40

Simulated 68.04 78.25

Real 76.00 72.60

Simulated 249.49 10.22

Real 256.41 10.01

Simulated 89.88 73.79

Real 92.41 74.00

Simulated 191.56 10.08

Real 183.80 12.34

97
.7

1%

86
.7

3%

93
.2

4%

84
.2

3%

14
6.

39
%

86
.7

3%

14
3.

83
%

11
3.

35
%

52
.8

6%

35
.9

1%

66
.5

7%

46
.7

6%

40
.8

0%

35
.9

1% 56
.8

2%

36
.7

1%

0%

20%

40%

60%

80%

100%

120%

140%

160%

random Intelligent random Intelligent random Intelligent random Intelligent

O
A

scenario 1 scenario 2 scenario 3 scenario 4

Fig. 7 – Efficiency and overhead obtained with the intelligent strategy compared with a random flood of requests, shown for

four different scenarios.

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 3 3 5 – 3 5 4344

Author's personal copy

diversify the attack requests in order to bypass possible

security mechanisms that rely on the detection of identical or

similar requests to the server.

It is also important to note that the attacker could improve

the performance of the attack through two additional

procedures:

� Maximization of the service time of the attack requests:

Once an attack thread has occupied a position in a service

queue, it is desirable to maintain it as long as possible. Thus,

the number of outputs in the server is reduced and, therefore,

so is the traffic rate needed for occupying the freed positions.

This tactic is not possible in some cases, but there are others

in which it certainly is. Consider the persistent HTTP server

case. If the attacker wanted to extend the time that

a connection persists, he would only have to repeatedly send

requests to the server on the same connection just before the

persistent connection timeout expired. Depending on the

configuration of the server, this could be done a specified

number of times, or even with no limit to the number of

requests.4 This kind of strategy has previously been seen in

other attacks like Naptha (SANS Institute, 2001).

� Attack strategy optimization:

The attacker can also optimize the attack strategy itself in

order to gain better performance. Concerning the basic

seizures following strategy, it has been stated that an attack

thread should recover a position by sending requests at a rate

t2 t4t3

t3

server

attacker

SOA1

SOA2

tofftime1

tofftime2

t1

t1

t2 t4

t5

t5

t6

t6

time

thread 1

thread 2

Seized by thread 1
Output forecasted

by thread 2

Output forecasted
by thread 1 Seized by thread 1

attack
requests

tofftime2

Fig. 8 – Diagram of the execution of two basic attack periods in which one attack thread seizes two positions but the other

fails in the seizure.

¿P>P0?

Attend the

output

NO

Introduce information
in the position squeue

New seized

Control point

Event

TaskT

Estimate the instant
of occurrence of the

next output

YES

Wait a recovery
interval. Δr

Is there an own
output available?

Send an attack
request

YES

NO

NO

Has a position in a
queue been seized?

NO

End of attack

period

YES

YES

Is there an
unattended output of
other attack thread?

BEGINNING

Fig. 9 – Flow diagram for the behaviour of the attack

threads with the ISS strategy.

4 In the Apache 2.0 server, this value is given by the directive
MaxKeepAliveRequests. When its value is 0 there is no limit to the
number of consecutive requests at which the connection is
closed.

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 3 3 5 – 3 5 4 345

Author's personal copy

of 1/Dr in the case of failure to achieve seizure. In the

following, an improved strategy is described. This new tech-

nique makes the attack more efficient and enables the

attacker to have more control over its execution.

6.1. Inter-thread information sharing and seizure
threshold strategy (ISS)

If we analyze the behaviour of the attack implemented with

the basic seizures following strategy, one aspect stands out,

namely the fact that, although the objective of an attack

thread is to seize only one position at a time in a service

queue, as it may send more than one request during a basic

attack period, the number of seized positions could also be

more than one. This phenomenon is illustrated in Fig. 8,

where the instants of occurrence for two outputs are repre-

sented. One of them has been estimated by attack thread 1,

while attack thread 2 has forecast the other one. Both attack

threads have programmed basic attack periods with the

sending of three attack requests in this example. These

sendings are represented by continuous lines for attack

thread 1 and dashed lines for attack thread 2. It can be seen in

the figure that, when the output forecast by thread 1 occurs,

the freed position is correctly seized by a request from this

thread. However, when the output whose instant of occur-

rence was estimated by thread 2 occurs, the next attack

request also belongs to thread 1. This means that thread 1

seizes two positions in the queue, whilst thread 2 loses

a position. Initially, this is not a drawback, as the aim of the

attack is to maintain the positions seized. However, two

problems that are described in the following then arise.

First, if the attacker runs as many attack threads as there

are positions in the service queues, the fact that one attack

thread seizes more than one position makes others enter the

recovery phase during which a request is sent every Dr

seconds. Obviously, if the rest of the positions are seized, the

attacker is foolishly sending requests to the server, thus

increasing the traffic rate with no benefit at all.

On the other hand, each attack thread has been designed to

launch a basic attack period whenever the instant of an output

has been forecast. This means that, even if the attack thread

had more than one position seized in the queues, it would

choose only one of them to launch an attack period. Hence-

forth, we will say that the output in a thread for which an

attack period is scheduled is an attended output. On the

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

3 5 7 9 11 7 9 11 15 6 14 16 18 20 22 22 26 30 34 37

P
e
r
c
e
n

t
a
g

e

o

f

a
v
a
i
l
a
b

l
e

t
i
m

e
,

T
A
V

ITIS
Basic

Ns = 4 Ns = 8 Ns = 14 Ns = 30

Ns = 4 Ns = 8 Ns = 14 Ns = 30

N
a

N
a

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

1000%

a

b

3 5 7 9 11 7 9 11 15 6 14 16 18 20 22 22 26 30 34 37

O
v
e
r
h

e
a
d

,

O

ITIS
Basic

Fig. 10 – Comparison between the values TAV and O obtained from executing the attack with both the basic and the ISS

strategies, when the value of Na is varied, for four values of Ns.

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 3 3 5 – 3 5 4346

Author's personal copy

contrary, the remaining positions seized in the queue will

generate outputs that we term unattended outputs. The second

problem that appears when an attack thread seizes more than

one position consists of the fact that it will only attend one

output, and the rest will be unattended, thus lowering the

efficiency of the attack.

To resolve these two problems, we propose a new strategy,

called the inter-thread information sharing and seizures

threshold (ISS), which modifies the proposed behaviour by the

basic seizures following strategy in order to improve both the

efficiency of the attack and the control over its execution, as

described below. A flow diagram for the behaviour of the

attack threads with this new strategy is shown in Fig. 9, and

can be summarized by describing two main features:

� Inter-thread information sharing (ITIS) feature:

Whenever an attack thread, after the execution of a basic

attack period, fails in the seizure of a position in a service

queue, before entering the recovery phase as specified in the

basic strategy, it will ask other attack threads for seizures that

are unattended. If any of them exists, the attack thread will

attend it by programming a basic attack period around its

predicted instant of occurrence.

There are two remarkable implementation issues in this

feature. First, each attack thread will have to save the infor-

mation of unattended outputs in a common positions queue,

that should be accessible to all the attack threads. In order to

enable the distribution of the attack, the information inserted

in the positions queue should not be host-dependent – for

example, it could not be a socket descriptor. Therefore, a good

candidate is the time-stamp of the predicted instant for the

output. This implies that every attack thread that seizes

a position must estimate the instant of the output before

inserting an attack request in the positions queue. Thus, in the

case of the persistent HTTP server, the attack thread should

wait for the HTTP response, at trec, to calculate Toutput.

At the same time that the attack threads are inserting

information about the instants of the outputs, a mainte-

nance task should be accomplished on the positions queue,

in order to eliminate the information corresponding to those

outputs that have already occurred. When this happens, the

eliminated positions have become unattended, which is not

desirable, as it causes the efficiency to fall. In order to avoid

this, the extraction policy from the positions queue should

be to take those for which the expiry timer is closest to

ending.

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

P
e
r
c
e
n

t
a
g

e

o

f

a
v
a
i
l
a
b

l
e

t
i
m

e
,

T
A
V

ITIS
Basic

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

0.
5

1.
5 3 10 0.
5

1.
5 3 10 0.
5

1.
5 3 10

O
v
e
r
h

e
a
d

,

O

Ns = 8 Ns = 14 Ns = 20

0.
5

1.
5 3 10 0.
5

1.
5 3 10 0.
5

1.
5 3 10

Ns = 8 Ns = 14 Ns = 20

Δ
r

Δ
r

ITIS
Basic

a

b

Fig. 11 – Comparison between the values TAV and O obtained from executing the attack with both the basic and the ISS

strategies, when the value of Dr is varied, for three values of Ns.

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 3 3 5 – 3 5 4 347

Author's personal copy

On the other hand, it is also possible that, when an attack

thread fails in a seizure, it has already seized positions cor-

responding to unattended outputs that have not been inserted

in the queue (known as own outputs). In this case, the thread

can attend an own output instead of fetching information

from the positions queue, thus simplifying and speeding up

the process of information sharing.

Finally, if there are available neither own seized positions nor

information on the positions queue, the attack thread will

have to wait a recovery interval, Dr, to repeat the fetching

process previously described.

� Seizures threshold (ST) feature:

This feature allows the attacker to establish a threshold for

the number of seizures to be simultaneously possessed, P0.

This threshold could be dynamically modified during the

execution of the attack.

The number of total positions seized in the server, P, is

continuously monitored. As long as the condition P< P0 is

maintained, the behaviour of the attack threads is that

specified by the ITIS feature. However, when the condition

P� P0 is reached, the behaviour of those attack threads

which are not attending outputs is modified, in such a way

that they remain ‘‘asleep’’, waiting for the condition to

change.

6.1.1. Analysis of the ITIS feature
We are now interested in testing whether, as expected, the

ITIS feature improves the efficiency of the attack. For this

purpose, the new strategy was implemented in the NS-2

simulator. For the sake of simplicity, all the features of the ITIS

strategy except that of the distribution of the attack among

different compromised machines were implemented.

The method chosen for comparing the basic strategy and

the ITIS feature is based on observation of the performance

indicators that measures both the efficiency (in terms of the

percentage of available time, TAV), and the traffic rate (over-

head, O). This observation is carried out for a large number of

different simulated scenarios. For each one, the variation of

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

0%

100%

200%

300%

400%

500%

600%

700%

0.
1

0.
4

0.
9

1.
7 5 12 0.
2

0.
6

1.
3 2 8

0.
1

0.
4

0.
9

1.
7 5 12 0.
2

0.
6

1.
3 2 8

var[T
out

] + var[RTT/2]

var[T
out

] + var[RTT/2]

P
e
r
c
e
n

t
a
g

e

o

f

a
v
a
i
l
a
b

l
e

t
i
m

e
,

T
A
V

O
v
e
r
h

e
a
d

,

O

ITIS

Basic

ITIS

Basic

Ns = 8Ns = 4 Ns = 14 Ns = 20

0.
1

0.
4

0.
9

1.
7 5 12 0.
2

0.
6

1.
3 2 8

0.
1

0.
4

0.
9

1.
7 5 12 0.
2

0.
6

1.
3 2 8

Ns = 8Ns = 4 Ns = 14 Ns = 20

a

b

Fig. 12 – Comparison between the values TAV and O obtained from executing the attack with both the basic and the ISS

strategies, when the value of var[Tout] D var[RTT/2] is varied, for four values of Ns.

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 3 3 5 – 3 5 4348

Author's personal copy

several attack parameters was studied. These parameters

were varied independently, assuming a default value for them

when a parameter was not studied. The following parameters

were used.

� Number of attack threads, Na. The default value is equal to

the number of positions in the service queue, Na¼ 14.

� Recovery interval, Dr. The default value is Dr¼ 1 s.

� Deviations between the occurrence of an output and the

arrival of the basic attack period at the server. Taken from

Expression (5), these variations result in var[Tout]þ var[RTT/2].

The default value is var[Tout]þ var[RTT/2]¼ 0.2.

� Duration of the activity phase of the basic attack period,

tontime. The default value is tontime¼ 0.4 s.

� Interval, D. The default value is D¼ 0.2 s.

Figs. 10–14 display the results of these experiments. Firstly,

in Fig. 10, it can be seen that the efficiency of the ITIS feature is

higher (lower TAV) for most of the Na values, even when the

overhead is lower. Note that, for low Na values, the overhead is

higher with ITIS, which seems to be the opposite of the

expected behaviour, that is, an overhead reduction. However,

this is because, as more outputs are attended with ITIS, the

overhead introduced by the associated basic attack periods is

considered. This is why a higher efficiency is also obtained. On

the other hand, it can be seen that, when using a high value for

Na, the use of a coordinated strategy between them (ITIS)

reduces the overhead.

Fig. 11 shows the results obtained when the variations are

performed on the Dr parameter. It can be seen that only when

the value of Dr is low is there a better efficiency in the basic

strategy, although this is, of course, at the cost of a consider-

ably higher overhead. On the other hand, for non-low values

of Dr, ITIS is more efficient, even when a lower overhead is

considered.

Fig. 12 shows the results concerning var[Tout]þ var[RTT/2].

We see that, for similar efficiency values, the overhead is

much higher in the basic strategy (in the scenarios considered

there is an absolute mean increase of 142.83%).

Fig. 13 shows the results obtained when varying tontime.

Note that, while the overhead with ITIS is always lower, the

efficiency obtained is better (lower TAV). Among all the

scenarios shown, only when tontime¼ 0.2 s can there be found

an improvement with the basic strategy, although the cost to

be paid is an overhead increase of 200%.

Finally, Fig. 14 shows the results from the variations in the

D parameter. Again, in every case a lower overhead is needed

with ITIS, which even obtain better efficiency in some cases.

In summary, the above-described experiments confirm

that the ITIS feature leads to a better performance compared

to the basic strategy, and that this is due to the sharing of

information between the different active attack threads.

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

0.90%

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0%

200%

400%

600%

800%

1000%

1200%

ITIS
Basic

ITIS
Basic

t
ontime

t
ontime

P
e
r
c
e
n

t
a
g

e

o

f

a
v
a
i
l
a
b

l
e

t
i
m

e
,

T
A
V

a

b

O
v
e
r
h

e
a
d

,

O

Ns = 8 Ns = 14 Ns = 20

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Ns = 8 Ns = 14 Ns = 20

Fig. 13 – Comparison between the values TAV and O obtained from executing the attack with both the basic and the ISS

strategies, when the value of tontime is varied, for three values of Ns.

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 3 3 5 – 3 5 4 349

Author's personal copy

6.1.2. Analysis of the ST feature
We are now interested in the usefulness of the ST feature. In

particular, it is important to determine under which condi-

tions the attack is able to reach a configured seizures

threshold and if it is able to maintain it over time. For this

purpose, experiments were carried out in a worst case

scenario for the attack, consisting of a server receiving high-

rate traffic from legitimate users. Thus, performance of the

attack is complicated, as the users will have a higher proba-

bility of seizing positions in the queue.

In the experiments carried out, some conclusions about

the behaviour of the attack with the ST feature were reached,

and these led to the introduction of some design rules for the

attack. Let us now describe these conclusions and the exper-

iments from which they are derived:

� The attack is able to reach a number of positions

oscillating around the threshold:

The temporal evolution of the number of seized positions

during an attack when three different thresholds are set is

represented in Fig. 15. In this case, the server owns a total of 40

positions in the queues. It can be seen that, after a short

transitory period, P oscillates around the threshold, P0.

The values P> P0 are obtained due to the activation of all the

threads after P falls below P0, which causes an excess in the

number of seizures. On the other hand, the values P< P0 are

due to the existence of user traffic, which is also fighting to

seize positions in the queues.

� The threshold allows the attacker to establish an operation point

for the attack:

When using the ST feature, the overhead and the efficiency of

the attack are affected by the value chosen for the seizures’

threshold. Thus, the choice of high values for the threshold

implies high efficiency and, consequently, a high overhead.

On the other hand, if a low value is selected for the threshold,

it will result in a lower overhead and, of course, worse

efficiency.

In Fig. 16, the performance indicators for an example attack,

when launched against a server with 40 positions, are shown.

The figure represents both the availability, A, and the over-

head, O, for different values of the threshold, P0. Note that, as

P0 increases, the attack becomes more efficient (lower value

for A) and the overhead rises.

In conclusion, the attacker could use the threshold in order to

gradually increase the DoS level. By these means, the attack is

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

0.05 0.1 0.2 0.4 0.05 0.1 0.2 0.4 0.05 0.1 0.2 0.4

P
e

r
c

e
n

t
a

g
e

o

f

a

v
a

i
l
a

b
l
e

t
i
m

e
,

T
A
V ITIS

Basic

Δ

0%

200%

400%

600%

800%

1000%

1200%

1400%

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

O
v
e
r
h

e
a
d

,

O

ITIS
Basic

Δ

Ns = 14Ns = 8 Ns = 20

Ns = 14Ns = 8 Ns = 20

a

b

Fig. 14 – Comparison between the values TAV and O obtained from executing the attack with both the basic and the ISS

strategies, when the value of D is varied, for three values of Ns.

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 3 3 5 – 3 5 4350

Author's personal copy

controlled and this technique could be used for bypassing

security mechanisms (e.g. mis-training an anomaly based IDS

that learns normal behaviours based on recent traffic

measures).

� There is a threshold value above which the attack is not able to

seize more positions:

It can be seen that, starting from a given value for the

threshold which we term critical occupation value, the attacker

is not able to reach the number of positions specified by the

threshold P0 without considerably raising the overhead of

the attack. Obviously, this is always true for threshold values

greater than the number of positions in the server. But

the existence of user traffic can also lead to the critical

occupation value being situated below the number of

positions in the server.

In the example scenario results, illustrated in Fig. 15, it can be

seen that, although the threshold value P0¼ 35 can be easily

reached, when the value is set to P0¼ 38 (see Fig. 17), and with

40 positions in the server, the attack is not able to reach it.

In summary, the critical occupation value is situated below

the total number of positions in the server and its value

depends on the legitimate users’ traffic rate, decreasing as the

latter increases. Note that by observing the level at which the

threshold is attained, the attacker could decide whether the

critical occupation value had been reached or not.

Finally, consider also that the critical occupation value might

be reached (if it is below the total number of positions in the

0

5

10

15

20

25

30
S

e
i
z
e
d

p

o
s
i
t
i
o

n
s
,

P

S
e
i
z
e
d

p

o
s
i
t
i
o

n
s
,

P

S
e
i
z
e
d

p

o
s
i
t
i
o

n
s
,

P

Threshold P0 = 20

5

a

b

c

10 15 20 25 30 35 40 45 50 55 60

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40 45 50 55 60

0

5

10

15

20

25

30

35

40

Time (s)

Time (s)

Time (s)

5 10 15 20 25 30 35 40 45 50 55 60

Threshold P0 = 30

Threshold P0 = 35

Fig. 15 – Temporal evolution of the number of seized positions, P, for three different P0 values in an attack against a server

with 40 positions: (a) P0 [20, (b) P0 [30 and (c) P0 [35.

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 3 3 5 – 3 5 4 351

Author's personal copy

server) at the cost of a considerable increase in the attack

overhead. This can be seen in Fig. 16(a) where, for the same

attack scenario in which the users’ traffic rate has been varied,

we observe that the increase in the overhead becomes higher

for the values P0¼ 20 (Ta¼ 3), P0¼ 35 (Ta¼ 8), and P0¼ 38

(Ta¼ 20). Thus, in all cases, it is not recommendable for the

attacker to surpass the critical occupation value if a high

overhead is not acceptable.

6.2. Attack procedure with the ISS strategy

This section uses the conclusions obtained through the

analysis of the ST and ITIS features to build an effective

procedure for carrying out the attack.

The previous step to launching an attack is to study the

server characteristics, namely to model the vulnerability to be

exploited and to choose the configuration values for the attack

parameters. Specifically, the basic attack period parameters,

tontime, tofftime and D, should be established mainly depending

on the overhead that is considered acceptable by the attacker.

Additionally, the number of attack threads must be set equal

to the number of positions needed, that is, equal to the value

of the threshold P0. Finally, the recovery interval, Dr, should be

chosen in such a way that the existence of many attack

threads without a position in the queue will not cause a high

level of traffic. Therefore, we consider that a reasonable choice

for this value is to approximate Dr to Na, so that a mean value

of one attack thread per second is attempting to recover

a position.

Summarizing these design rules, the steps that should be

followed for carrying out the attack are as follows.

Step 1:

� Initialize the attack parameters with the following

values:

P0 ¼ 1

Na ¼ 1

Dr ¼ Na

Step 2:

� Monitor the value of the seized positions, P, during an

observation time.

� If the value of P reaches P0 and keeps oscillating around this

value, wait for an adaptation time, Tadapt, and go to Step 3.

This time is introduced before increasing the value of P0,

thus allowing the attacker to gradually increase the traffic

rate against the server. The value of Tadapt will depend on

the needs to launch a ‘‘slower’’ (in the sense of gradual)

attack.

0%

50%

100%

150%

200%

250%

300%

1 5 10 18 20 30 35 38 40

Threshold, P
0

1 5 10 18 20 30 35 38

a

b

40

Threshold, P
0

O
v
e
r
h

e
a
d

,

O

Ta = 3
Ta = 8
Ta = 20

0%

20%

40%

60%

80%

100%

120%

A
v
a
i
l
a
b

i
l
i
t
y
,

A

Ta = 3
Ta = 8
Ta = 20

Fig. 16 – Performance of an example attack with the ISS

strategy against a server with 40 positions, for different

values of the seizures threshold, P0, and the interval

between arrivals of legitimate users requests, Ta: (a)

overhead, O, and (b) availability, A.

0

5

10

15

20

25

30

35

40

45

Time (s)

S
e
i
z
e
d

p

o
s
i
t
i
o

n
s
,

P

Umbral Pa = 38

5 10 15 20 25 30 35 40 45 50 55 60

Fig. 17 – Temporal evolution of the number of seized positions, P, in an attack against a server with 40 positions with

a threshold P0 [38.

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 3 3 5 – 3 5 4352

Author's personal copy

� Otherwise, if the value of P does not oscillate around P0

during an observation time, it is concluded that the critical

occupation value has been reached. Go to Step 4.

Step 3:

� Update the attack parameters in this way:

P0 ¼ P0 þ 1

Na ¼ Na þ 1

Dr ¼ Na

� Go to Step 2.

Step 4:

� Update the attack parameters in this way:

P0 ¼ P0 � 1

Na ¼ Na � 1

Dr ¼ Na

� Go to Step 2.

7. Conclusions and further work

As its main contribution, this paper presents the funda-

mentals of a DoS attack launched against concurrent

servers, which has the feature of using a low-rate of traffic.

This feature could be used by an attacker for bypassing

security systems that rely on the detection of traffic rate

thresholds, or simply for launching the attack with fewer

resources.

The existence of temporal deterministic patterns in the

behaviour of a system or a protocol has been shown to

represent a vulnerability upon which these kinds of attacks

can be built. We provide some examples of vulnerable

systems and study particularly the persistent HTTP server

case.

The performance of these attacks was evaluated, yielding

worrying results, due to the high efficiency they achieved.

Moreover, it has been shown that the attacker could make use

of techniques by which the traffic rate generated during the

attack can be controlled.

A prototype of the attack has been created to show that its

implementation is perfectly feasible. Moreover, the results

obtained in the real scenarios show that the simulation results

correctly represent the attack behaviour.

Obviously, this work needs to be continued by generating

defense techniques against this kind of attacks. We are

currently doing some further work on this line. First, we

have checked in preliminary experiments that techniques

consisting on the randomization of the service time does not

work to protect servers from this attack, as it is designed in

such a way that all the attack threads help each other to

seize positions in the queue, and the randomization will

influence more in a degradation of the service quality than

in the attack effects mitigation. Moreover, we are exploring

buffer management techniques in the server, which seem to

work more efficiently against these attacks. In summary,

the detailed description of the attack behaviour made in

this paper should help in the development of defense

techniques.

Acknowledgments

We would like to specially thank Aleksandar Kuzmanovic

(Northwestern University of Chicago) and the anonymous

reviewers for their valuable comments that have considerably

increased the quality of this paper. This paper has been

partially supported by the Spanish Government through MEC

(Project TSI2005-08145-C02-02, FEDER funds 70%).

r e f e r e n c e s

Axelsson S. Intrusion detection systems: a survey and taxonomy.
Technical report. Goteborg, Sweden: Department of Computer
Engineering, Chalmers University; 2000.

Chan MC, Chang E, Lu L, Ng S. Effect of malicious
synchronization, ACNS, Singapore, Jun 6–9, 2006. In:
Springer Lecture Notes in Computer Science, vol. 3989; 2006.
p. 114–29.

CERT Coordination Center. CERT advisory CA 1996-21, TCP SYN
flooding and IP spoofing attacks. September 1996. revised
November 2000, http://www.cert.org/advisories/CA-1996-21.
html; 1996.

Elteto T, Molnar S. On the distribution of round-trip delays in TCP/
IP networks. In: Proceedings of the 24th annual IEEE conference
on local computer networks, LCN’99; 1999, p. 172–81.

Feinstein L, et al. Statistical approaches to DDoS attack detection
and response. In: Proceedings of DARPA information
survivability conference and exposition, vol. 1. IEEE CS Press;
2003. p. 303–14.

Fielding R, Irvine UC, Gettys J, Mogul J, Frystyk H, Berners-Lee T.
RFC2068, hypertext transfer protocol – HTTP/1.1. Network
Working Group January 1997.

Guirguis M, Bestavros A, Matta I, Zhang Y. Reduction of quality
(RoQ) attacks on internet end-systems, INFOCOM 2005. In:
24th Annual joint conference of the IEEE computer and
communications societies; 2005. p. 1362–72.

Guirguis M, Bestavros A, Matta I, Zhang Y. Reduction of quality
(RoQ) attacks on dynamic load balancers: vulnerability
assessment and design tradeoffs, INFOCOM 2007. In: 26th IEEE
international conference on computer communications; 2007,
p. 857–65.

Guirguis M, Bestavros A, Matta I, Zhang Y. Adversarial exploits of
end-systems adaptation dynamics. J Parallel Distrib Comput
2007b;67(3):318–35.

Guirguis M, Bestavros A, Matta I. Explaining the transients of
adaptation for RoQ attacks on internet resources. Proceedings
of International Conference on Network Protocols 2004:
184–95.

Gil TM, Poleto M. MULTOPS: a data-structure for bandwidth
attack detection. In: Proceedings of 10th USENIX security
symposium; 2001.

Geng X, Whinston AB. Defeating distributed denial of service
attacks. IEEE IT Professional 2000;2(4):36–42.

Huang Y, Pullen J. Countering denial of service attacks using
congestion triggered packet sampling and filtering. In:

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 3 3 5 – 3 5 4 353

Author's personal copy

Proceedings of the 10th international conference on computer
communications and networks; 2001.

Hofmann M, Beaumont LR. Content networking: architecture,
protocols and practice. Elsevier, ISBN 1-55860-834-6; 2005.

Jung J, Krishnamurthy B, Rabinovich M. Flash crowds and denial
of service attacks: characterization and implications for CDNs
and web sites. In: Proceedings of international world wide web
conference, ACM Press; 2002, p. 252–62.

Kuzmanovic, Knightly E. Low-rate TCP-targeted denial of service
attacks and counter strategies. IEEE/ACM Trans Network
August 2006;14(4):683–96.

Li M. Change trend of averaged Hurst parameter of traffic
under DDOS flood attacks. Computers Security 2006;25(3):
213–20.

Li M. An approach to reliably identifying signs of DDOS flood
attacks based on LRD traffic pattern recognition. Computers
Security 2004;23(7):549–58.

Li M, Wang S, Zhao W. A real-time and reliable approach to
detecting traffic variations at abnormally high and low rates.
Springer LNCS 2006;4158:541–50.

Liu C, Albitz P. DNS and BIND. O’Reilly & Associates, Inc., ISBN
1565920104; 1993.

Liu Z, Niclausse N, Jalpa-Villanueva C. Traffic model and
performance evaluation of Web servers. Performance
Evaluation 2001;46(2–3):77–100.

Maciá-Fernández G, Dı́az-Verdejo JE, Garcı́a-Teodoro P.
Evaluation of a low-rate DoS attack against iterative servers.
Comput Networks 2007;51(4):1013–30.

Mirkovic J, Dietrich S, Dittrich D, Reiher P. Internet denial of
service. Attack and defense mechanisms. Prentice Hall, ISBN
0-13-147573-8; 2004.

Mirkovic J, Reiher P. A taxonomy of DDoS attack and DDoS
defense mechanisms. SIGCOMM Comput Commun Rev 2004;
34(2):39–53.

Network Simulator 2. Available at: http://www.isi.edu/nsnam/ns/.
Scherrer, Larrieu N, Owezarski P, Borgnat P, Abry P. Non-Gaussian

and long memory statistical characterizations for Internet
traffic with anomalies. IEEE Trans Depend Secure Comput
2007;4(1): 56–70.

Shevtekar A, Ansari N. A router-based technique to mitigate
reduction of quality (RoQ) attacks. Comput Networks 2008;
52(5):957–70.

SANS Institute. NAPTHA: a new type of denial of service attack;
2001.

Siris VA, Papagalou F. Application of anomaly detection
algorithms for detecting SYN flooding attacks. Comput
Commun 2006;29(9):1433–42.

Song T. Fundamentals of probability and statistics for engineers.
John Wiley & Sons, ISBN 0-470-86813-9; 2004.

Wang H, Zhang D, Shin K. Detecting SYN flooding attacks. In:
Proceedings of 21st joint conference on IEEE computer and
communications societies (IEEE INFOCOM), IEEE Press, 2002;
p. 1530–39.

Zaki MJ, Li W, Parthasarathy S. Customized dynamic load
balancing for a network of workstations. In: Fifth IEEE
international symposium on high performance distributed
computing (HPDC-5 ’96); 1996. p. 282–91.

Gabriel Maciá-Fernández is an Assistant

Professor in the Department of Signal

Theory, Telematics and Communications

of the University of Granada (Spain). He

received a MS in Telecommunications

Engineering from the University of Sev-

ille, Spain, and got a Ph.D in 2007 from

the University of Granada. From 1999 to

2005 he worked as a specialist consultant

in ‘Vodafone Spain’. His research was initially focused on

multicasting technologies but he is currently working on

computer and network security, especially in the field of

intrusion detection and response systems, denial of service,

web security and secure protocols design.

Jesús E. Dı́az-Verdejo is Associate

Professor in the Department of Signal

Theory, Telematics and Communications

of the University of Granada (Spain). He

received his B.Sc. in Physics (Electronics

speciality) from the University of Granada

in 1989 and has held a Ph.D. grant from

Spanish Government. Since 1990 he is

Associate Professor at this University. In

1995 he obtained a Ph.D. degree in Physics. His initial research

interest was related with speech technologies, especially

automatic speech recognition. He is currently working in

computer networks, mainly in computer and network secu-

rity, although he has developed some work in telematics

applications and e-learning systems.

Pedro Garcı́a-Teodoro received his B.Sc. in

Physics (Electronics speciality) from the

University of Granada, Spain, in 1989. This

same year he was granted by ‘‘Fujitsu

España’’, and during 1990 by ‘‘IBM

España’’. Since 1989 he is Associate

Professor in the Department of Signal

Theory, Telematics and Communications

of the University of Granada, and member

of the ‘‘Research Group on Signal, Telematics and Commu-

nications’’ of this University. His initial research interest was

concerned with speech technologies, especially automatic

recognition, field in which he developed his Ph.D. Thesis in

1996. From then, his profile has derived to that of computer

networks, and although he has done some works in telematics

applications and e-learning systems, his main current

research line is centred in computer and network security.

c o m p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 3 3 5 – 3 5 4354

