LoRDAS: A Low-Rate DoS Attack against
Application Servers

Gabriel Macia-Fernédndez, Jestus E. Diaz-Verdejo, Pedro Garcia-Teodoro,
and Francisco de Toro-Negro

Dpt. of Signal Theory, Telematics and Communications - University of Granada
¢/ Daniel Saucedo Aranda, s/n - 18071 - Granada, Spain
gmacia@ugr.es, jedv@ugr.es, pgteodor@ugr.es, ftoroQugr.es

Abstract. In a communication network, there always exist some specific
servers that should be considered a critical infrastructure to be protected,
specially due to the nature of the services that they provide. In this
paper, a low-rate denial of service attack against application servers is
presented. The attack gets advantage of known timing mechanisms in the
server behaviour to wisely strike ON/OFF attack waveforms that cause
denial of service, while the traffic rate sent to the server is controlled,
thus allowing to bypass defense mechanisms that rely on the detection of
high rate traffics. First, we determine the conditions that a server should
present to be considered a potential victim of this attack. As an example,
the persistent HTTP server case is presented, being the procedure for
striking the attack against it described. Moreover, the efficiency achieved
by the attack is evaluated in both simulated and real environments, and
its behaviour studied according to the variations on the configuration
parameters. The aim of this worl] is to denounce the feasibility of such
attacks in order to motivate the development of defense mechanisms.

1 Introduction

The problem of the denial of service attacks [1] still remains unsolved. Although
multiple solutions for the defense and response against these attacks have been
proposed [2], the attackers have also evolved their methods, which have become
really sophisticated [3].

For carrying out a DoS attack, two main strategies are used: either using a
specially crafted message that exploits a vulnerability in the victim, or sending
it a flooding of messages that somehow exhaust its resources. These last attacks
are called DoS flooding attacks.

Although a flooding attack implicitly implies the sending of a high rate of
traffic to the victim, in the last years two special DoS flooding attacks, charac-
terized by the sending of low-rate traffic, have been reported: the Shrew attack
[4] and the low-rate DoS attack against iterative servers [5]. Although these two

! This work has been partially supported by the Spanish Government through MYCT
(Project TSI2005-08145-C02-02, FEDER funds 70%).

J. Lopez and B. Hammerli (Eds.): CRITIS 2007, LNCS 5141, pp. 197-209] 2008.
© Springer-Verlag Berlin Heidelberg 2008

198 G. Macia-Fernandez et al.

attacks are different, both rely on the awareness of a specific timing mechanism
involved in the communication procedure of the victims that allows to reduce
the traffic rate during the attack process. The reduction of the traffic rate in
a DoS attack has essential implications, mainly because it allows the attacker
to bypass those defense mechanisms that rely on the detection of considerable
variations in the traffic rate [6][7][8].

This paper presents the low-rate DoS attack against concurrent servers (hence-
forth the LoRDAS attack). It is an evolution of the low-rate DoS attack against
iterative servers, adapted for damaging more complex systems like concurrent
servers. A concurrent server is characterized by allowing the processing of the
received requests in a parallel way, not as in the iterative servers, where these
are sequentially processed. Given that the bulk of the servers in Internet are
implemented as concurrent servers and, in many cases, these are a critical in-
frastructure, the existence of a DoS attack against them supposes a high risk
and, therefore, its execution could have a wide impact.

The paper is structured as follows. In Section 2] a model for concurrent
servers is contributed. An analysis of the existent vulnerabilities in the concur-
rent servers and the mechanisms used for carrying out the attack are discussed
in Section 3l Section [presents the results for the evaluation of the performance
of the attack in both simulated and real environments. Finally, some conclusions
and future work are given in Section

2 Server Model

The scenario where the LoRDAS attack takes place is composed of a concurrent
server connected to a network, some legitimate users accessing to it, and one
or more machines that host the attack software (the fact that the attack is
distributed or not will not affect this work). From these machines, the attacker
launches the attack to the server. The traffic pattern coming from legitimate
users will be unpredictable, due to the fact that it is affected by the perception
of denial of service. Thus, it will be modelled as a poisson distribution with a
generic inter-arrival time 7.

The server has the ability of serving several requests at a time, in a parallel-
like way (real or virtual concurrency). It could be designed as a single machine,
or as a load balancer [9] bound to several machines. This last architecture is
usually known as a farm of servers.

The proposed model for the server is depicted in Fig.[Il It represents a farm of
M machines with a common load balancer that redirects each arriving request
to anyone of them. Once that a machine has been chosen, the incoming request
is queued up in a finite length queue within that machine, called service queue.
In case that no free positions are found in this queue, the request is discarded
(MO event). Obviously, whenever a machine has its service queue completely
full, it will not be chosen by the load balancer, so the MO events will be raised
only when no free positions at all are found in the whole server.

LoRDAS: A Low-Rate DoS Attack against Application Servers 199

Machine 1
> MO
Service Service R
. queue 1 module 1 > OK
Request j o
arrival ueue
RallA N Load time () Processing elements (N?)
balancer Service time (t3/)
| |
| |
- Machine M
‘ * MO
Service Servi
queue M CINAED >
module M > OK
Queue
time (t) Processing elements (N')
Service time ()

Fig. 1. Model for the server

The requests remain in the service queue during a queue time, té (being i
the number of the considered service queue, 1 < i < M), before passing to the
module in charge of processing the petitions, that is, the service module. Inside
this module, a number of N¢ processing elements can exist. These elements play
the role of either threads or children processes of the parent process implementing
the server functionality on every machine. Each processing element is able to
serve only one request at a time. Moreover, they could be running either in only
one or in several processors within the machine. The total number of processing
elements in the complete server is N = Zf\il N,

Each processing element in the service module ¢ spends a time called service
time, t% | in processing a request j. After the processing is finished in the service
module, an answer is sent to the corresponding client. We will refer to these
answers from the server as outputs.

Even considering that all the machines in the server are identical, note that
the service time %7 is expected to be different for each request j. This is mainly
due to the different nature of the requests. Namely, in a typical concurrent server
like a web server, the service time has been typically modelled as a heavy-tailed
distribution, as it is dependent on some different parameters, as the size of the
requested resource [10].

We are interested in such a situation that identical requests are queued up
in the server. In this case, considering also that all the machines have the same

200 G. Macia-Fernandez et al.

characteristics, it is expectable to get identical values for the service times of
all the requests. However, in a real situation, the requests could be served by
different machines, which normally have different features between them, and
even if they are served by the same machine, the service time will also depend
on the local conditions, namely the CPU load, memory utilization, disk usage,
number of interruptions, and multiple other factors will vary the final value of
the service time. The authors in [5] proposed, using the central limit theorem
[11], that these variations could be modelled by a normal distribution. Hence, the
service time, when identical requests are considered, becomes a random variable,
T, that will follow a normal probability density function:

F(Ts) = N (T, var[Ty]) (1)

3 Fundamentals of the LoRDAS Attack

The LoRDAS attack is a DoS attack that tries to exhaust the resources of the
target server. Its particularity consists in carrying this out by means of a low-rate
traffic in order to bypass some possible security mechanisms disposed to protect
the server. For that, the attack exploits a vulnerability in the server that allows
to intelligently reduce the traffic rate.

Next, the basic strategy followed for carrying out the attack and its imple-
mentation design will be presented.

3.1 Basic Strategy for Carrying Out the Attack

We consider a situation in which all the service queues of the server modelled in
Fig. @ are full of requests. Under this circumstance, every new arriving petition
could not be queued up, and will be consequently discarded. Obviously, if an
attacker manages to occupy all the positions in the queue, a denial of service
will be experienced by the legitimate users, as their requests are going to be
rejected. Normally, DoS flooding attack techniques try to achieve and maintain
this situation by sending a high rate of requests to the victim.

In the LoRDAS attack, the strategy for reducing the traffic rate to be sent to
the victim server is to concentrate the attack traffic only around specific instants
wisely chosen. Therefore, it is not neccessary to send attack packets when all the
service queues are full, as these will be rejected, but only when a new queue position
is freed. Hence, the key aspects in this strategy are: a) to forecast the instants
at which the outputs are generated in the server, and b) to manage the sending
of attack requests in such a way that they arrive to the server at these predicted
instants. Remark that the attack requests have the same form as any legitimate
request, as the objective is only to occupy a position in a service queue.

For predicting the instants at which the outputs are going to be raised at
the server, the attacker has to exploit a certain vulnerability. Although we can
not say that there is a general and common vulnerability in all the concurrent
servers that allows this prediction, we are afraid that, whenever the server exhibit

LoRDAS: A Low-Rate DoS Attack against Application Servers 201

a guessable fixed temporal pattern or deterministic behaviour, it is likely that
the instants of the outputs could be forecasted. This fact becomes a vulnerability
that allows an attacker to strike a LoORDAS attack against the server.

At first sight, it could seem that it is difficult to find such vulnerabilities, but
we have found that it is not certain. For example, consider a media server that
plays a publicity video on demand as an user ask for it. The number of licenses
for simultaneously reproducing the video is limited. The vulnerability consists
in the fact that the video always lasts the same time. Thus, if anyone ask for
its playback, to estimate the instant at which it finishes is similar to consider
its duration time. Therefore, an attacker could permanently seize a license by
repeating the requests just when the license is released. If he manages to take
all the licenses with this strategy, the DoS is achieved.

These vulnerabilities can also be found in more widespread servers in Internet.
A very important example is the persistent HT'TP server. As discussed in the
following, it is possible to forecast the instants at which these servers rise the
outputs and, therefore, they will be vulnerable to the LoRDAS attack.

Case Study: The Persistent HTTP Server

The persistent connection feature, that appears in the HT'TP 1.1 specification [13],
allows a web server to maintain a connection alive during a specified time interval
after that an HT'TP request has been served. This feature is used for reducing the
traffic load in the case that several requests are going to be sent to the server on
the same connection and in a reduced interval of time. Thus, before the sending
of the first request, a connection is established with the server; then the request
is sent and, after that, the server waits for a fixed amount of time before closing
the connectior. If a new request arrives on this connection before the expiration
of the mentioned timer, the timer is reset again. This mechanism is repeated a
fixed number of timesﬁ, after which the connection is closed. In this scenario, the
attacker could follow the next strategy in order to predict the instant at which the
output corresponding to a given request is going to be raised:

1. The attacker establishes a connection with the server. Making an analogy to
the server model, this connection will occupy a position in the service queue
and, thus, will play the role of a request.

2. The attacker sends an HTTP request to the server on the established con-
nection, which will be redirected to the machine i (1 <7 < M).

3. The connection will be awaiting in the service queue ¢ during a queue time
for its turn to enter the service module 1.

4. After tfl, a processing element extracts the connection from the service queue
i, processes the request and answers (HTTP response) to the attacker. This
response will reach the attacker at the instant ¢,.sp.

5. A timeout with a fixed value t,,: is scheduled in the processing element
before closing the connection. ¢,,; will play the role of Ty —~Eq. (- in our
model of the server, because all the requests will consume this time.

2 In an Apache 2.0 server, the directive KeepAlive Timeout controls this timeout.
3 In an Apache 2.0 server, the directive MazKeepAliveRequests controls this number.

202 G. Macia-Fernandez et al.

6. When t,,: expires, the connection is closed and, consequently, a new con-
nection is extracted from the service queue, generating a free position in the
queue. Therefore, the action of closing a connection is what, in our model,
is called an output.

In this particular case, the instant around which the attack packets should be
sent from the attacker to the victim server, tysqck, could be calculated as:

tattack = tresp — RTT + tout (2)

where we have considered RTT ~ 2 ~Tp as the mean value of the round trip time
and Tp the mean propagation time between the server and the attacker. The
above expression is obtained considering that the output happens ¢,,; seconds
after the HTTP response is sent to the attacker, which occurs at tyesp — Tp.
Consequently, the attacker should schedule the sending considering that it has
to travel through the network and will experience a delay of Tp.

As can be guessed, the persistent HT'TP server example could be extended to
any concurrent server that exhibits a behavior in which a timing scheme could be
known by a potential attacker. Of course, the strategy for predicting the instants
of the outputs should be adapted for each particular case.

3.2 Design of the Attack

Due to the fact that the instant at which an output is going to be raised de-
pends on the service time Ty, and this is a random variable, it is expected that
the forecasted instant varies with respect to the real instant of occurrence of
the output. Moreover, the attacker should manage to synchronize the arrival of
attack packets with the occurrence of the output, in order to seize the freed
position. In this task, the variance of the RTT between the attacker and the
server will also affect and therefore contribute to the mentioned variations.

In order to consider these variations, the attacker will send more than one
attack packet, and will try to synchronize their arrival to the server around the
predicted instant for the output. In other words, the attacker uses an ON/OFF
attack waveform, called attack period. A different attack period should be sched-
uled for every predicted output k. The following features characterize the attack
waveform:

— Ontime interval for the output &, tontime(k): the interval during which an
attempt to seize a freed position in the service queue due to the output k
is made by emitting attack packets. These packets should be sent around
Lattack 7Eq (m)i'

— Offtime interval for the output k, toprrime(k): the interval before ontime in
the period of attack corresponding to the output k& during which there is no
transmission of attack packets.

— Interval for the output k, A(k): the period of time comprised between the
sending of two consecutive packets during the ontime interval.

LoRDAS: A Low-Rate DoS Attack against Application Servers 203

In the case of the persistent HTTP server, an attack period starts whenever
the attacker receives an HTTP response, tffesp, and the value of toprrime(k) is
obtained, by using the Expression (), as:

—
tofftime<k) = t()ut — RTT — (3)

ontime(k)
2

For simplicity, the parameters for the design of the attack period, tontime(k),
A(k), and consequently ofriime(k) are made equal for all the attack periods,
independently of k, becoming tontime, A, and toffrime. This way, there is no
need to recalculate these parameters for every attack period, therefore being the
computational burden for the attacker reduced.

The different attack periods are scheduled as the outputs are being predicted.
One possible strategy to be followed in the implementation of the attack software
(malware) is a sequential scheduling of the different attack periods, as the out-
puts are predicted. The main problem of this design is that, when two or more
outputs are raised very close in time, the corresponding attack periods overlap,
making the control of the attack software more complicated and not scalable.
For this reason, the attacker could design the malware as a multithreaded pro-
cess, in which every thread is in charge of seizing only one queue position and
maintaining it as long as possible.

In this multithreaded malware, a new design parameter appears for the at-
tack: the number of attack threads, N,. It should be adjusted depending on the
required level of DoS and the maximum traffic level allowed to be sent against
the server.

On the other hand, if an attack period fails in seizing the wanted position in
the server, possibly because another user has seized it before, the corresponding
attack thread should try to obtain a new position. Note that, in the persistent
HTTP server example, an attack thread can only forecast the instant of an
output whenever it owns a position in the server. If the attack period fails, the
only way of gaining again a position is by “blindly” sending attack packets.
That’s why the attack is designed in such a way that when an attack thread
does not have any position seized, an attack packet is sent every interval that is
setup as a new attack parameter and that will be called trial interval, A;. When
the attack thread gets again a position, it continues its normal operation with
the attack period.

4 Evaluation of the Attack

In the following, the results obtained from the evaluation of the performance of
the introduced attack, in terms of both its efficiency and the rate of the traffic
involved, are presented. For this task, three indicators are used:

— Effort (E): it is the ratio, in percentage, between the traffic rate generated
by the intruder and the maximum traffic rate accepted by the server (server
capacity).

204 G. Macia-Fernandez et al.

— User perceived performance (UPP): it is the percentage given by the ratio
between the number of legitimate users requests processed by the server, and
the total number of requests sent by them.

— Mean occupation time (MOT): this indicator is defined for a scenario where
legitimate users do not send traffic. In this environment, MOT is the mean
percentage of time during which the server has no free positions at all in any
of its service queues, related to the total duration of the attack.

UPP is a measure for the efficiency of the attack, that is, it signals the DoS
degree experienced by the legitimate users. MOT gives also a measure of the
efficiency but the difference with UPP is that it considers an environment free of
user traffic, thus allowing to evaluate the efficiency without any dependency on
the user behaviour. The relationship between UPP and MOT is proportionally
inverse, due to the fact that the user will succeed in seizing a position of the
service queue with a higher probability as MOT gets lower.

E represents the traffic rate needed to carry out the attack. As the efficiency
constraints of the attack grow, it is expected to need higher effort. Thus, the
aim of the attack is to minimize UPP (similar to maximize MOT), trying not to
reach a threshold in the effort that would make the attack detectable.

4.1 Simulation Results

The performance of the attack has been evaluated in a simulated environment
where the LoORDAS attack as well as the legitimate users traffic and the concur-
rent server have been implemented using the Network Simulator 2 [12].
Regarding the efficiency achieved by the attack, in terms of UPP, we have
tested it against 20 different server configurations, with a number of processing
elements in the range 4 < N, < 50, and for each one of these configurations,
several settings of the parameters of the attack have been selected: t,ptime €
(0.15,06s), Ae(0.15,045), A € (15,55) and N, = N,. The user traffic has

12.0%
10.0%
8.0%
6.0%

4.0%

Lower UPP obtained

2.0%

0.0%

1 2 3 4 5 6 7 8 9 1011 12 13 14 1516 17 18 19 20
Scenario

Fig. 2. Best efficiency of the attack (lower UPP) obtained for 20 different scenarios

LoRDAS: A Low-Rate DoS Attack against Application Servers 205

90%
80%
70%
60%
50% .
40%
30% S SEEDA
20% * . >
10% . P
0% ‘ ‘ ‘ ‘ ‘
0% 50% 100% 150% 200% 250% 300%

Effort

*
‘e

*

UPP
<+

Fig. 3. Possible operation points for the attack in an scenario with Ny = 4, RTT =
0.1s, and f(Ts) =N(125,0.15): UPP vs E

160% -
140% -
120%
100% -
80% -
60% -
40% -
20% -
0% - T T T T T T T
Random LoRDAS Random LoRDAS Random LoRDAS Random LoRDAS

146,39%
143,83%

2
)
]
o

97,71%
93,24%

86,73%
84,23%
86,73%

W Effort
UPP

66,57%

52,86%
35,91%
46,76%
40,80%
35,91%
56,82%
36,71%

~— ~—

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Fig.4. UPP and E obtained by the LoRDAS attack compared with a random flood
of packets, for 4 different scenarios

been tuned both with a rate nearly equal to the processing rate of the server, and
also with a very low rate. The best efficiency results obtained for each server are
represented in Fig. 2l The maximum attack traffic rate involved in all of these
cases is £ = 315%. Note that the worst value obtained, 11.1%, (that is, for ten
requests sent by the users, only one is served) represents a very high efficiency.
Moreover, from the previous experiments, we have inferred another conclusion:
the attacker has a lot of operation points for adjusting the attack parameters to
obtain a lot of possible combinations of efficiency and effort. As an example, the
values for the E and UPP indicators obtained for 18 possible configurations of
the attack to a server where Ny, = 4, RT'T = 0.1s, and f(T,) = N'(12s,0.1s) are
shown in Fig. Bl Note that, for the attacker, a lot of parameters settings could be
eligible. Regretfully, this means that it is possible to tune the attack parameters
in order to bypass possible security mechanisms while a DoS is being made.
Additionally, other set of experiments have been made to check if the LoORDAS
strategy implies an improvement for the DoS attack when compared with a

206 G. Macia-Fernandez et al.
9 9
99.50% 1600% 100.00% 700%
e
99.40% 1400% 99.80% s e e g T 600%
u
99.30% 1200% 99.60% + 500%
%
99.20% 1000% 99.40% o <
5 99.10% r 800% u,% . 99.20% A 5
9%
= 99.00% - 600% g 99.00% F 300% W
o, |
98.90% t 400% 98.80% L 200%
u
98.80% t 200% 98.60% - 100%
98.40% b
98.70% Fo%
02 05 1 15 2 3 5 10 15 98.20% - L 0%
Trial Interval, A, 0 01020406091317 2 5 8 12
var[E]
(a) (b)
== \VOT Effort
99.40% 1000%
900% = \OT o Effort
99.20%
b 800% 99.60% 1200%
B 700% 99.50%
99.00% L
: 600% .. 99.40% 1000%
&5 98.80% 500% 5 gggg:f r800%
H 400% -20% 1 600% &
98.60% . 5 99.10% 600% &
Zgguf = 99.00% L 400%
98.40% o 98.90%
’ 100% 98.80% r 200%
98.20% + 0% 98.70% b 0%
16 7 8 9 10 11 14 15 16 0.05 0.1 02 0.4
Number of Attack Threads N, Interval A
(c) (d)
= \IOT o Effort
99.60% 1200%
99.50% - = 1000%
99.40% ———————=a- 800% ¢
= 99.30% - 600% £
w
= 99.20% 1 400%
99.10% 1 200%
99.00% 0%
02 04 06 038
Ontime
(e)

Fig.5. Evolution of the indicators MOT and effort when some variations in the
parameters of the attack are made: (a) trial interval A¢, (b) var[Ts], (¢) number of
attack threads Ng, (d) interval A, and (e) tontime

similar rate of packets randomly sent (with no intelligence) to the server. Fig. (]
shows the comparison for four different scenarios. For each one, both the values
of UPP and E are represented for the LoORDAS attack as well as for a random
flood of packets. As it is difficult to adjust both strategies to obtain an equal
value for E, we have taken always an attack configuration that generates a lower
E value than in the random strategy (worst case for our attack). Note that in
all the scenarios, as expected, the efficiency obtained by the LoRDAS attack is
significatively higher, even when the effort involved is lower.

Finally, the evolution of MOT and F has been obtained by varying different pa-
rameters of the model. This study gives a better understanding of the behaviour
of the attack, what could be applied later for the development of potential defense
techniques. For this, fixed values have been set for all the parameters, only the

LoRDAS: A Low-Rate DoS Attack against Application Servers 207

value of one of them have been varied, independently of the others. Fig.[Blshows the
results obtained for the most representative parameters: Az, var(Ts], Na, tontime
and A. The results show that, as expected, a higher efficiency is obtained when a
higher effort is also employed. Besides, we confirm that, by configuring the attack
parameters tontime, A¢, A and the number of attack threads IV, , the attacker could
tune the attack process to get different values UPP-FE, as deducted in the previ-
ous experiments. Finally, note that a variation in var|[Ts] only slightly affects the
efficiency. When the variance is higher, the forecasted instants are usually wrong
and, thus, the ontime period of the attack will be wrongly situated. Although this
makes the efficiency to decrease, a limit is reached because the ontime intervals
corresponding to the different attack threads help others to seize positions in the
queue. This is why we hypothesize that a randomization in the service time will
not constitute a good technique of defense against the LoRDAS attack.

4.2 Real Environment Results

A prototype of the LoRDAS attack has been also implemented in a Win32
environment in order to check its feasibility. The attack is carried out against an
Apache 2.0.52 web server hosted in a machine with the Windows XP operating
system. The server has been configured with the directive KeepAliveTimeout =
10 seconds, which corresponds to the parameter t,,;, which plays the role of T}
in our model. Besides, the directive ThreadsPerChild, which represents the
number of threads for the processing of requests in the server, Ny, has been
set in a range from 12 to 50. The scenarios chosen for the different considered
experiments are analogous to that one presented in Section[2l The traffic from the
legitimate users has been synthetically generated following a Poisson distribution
with a mean traffic rate equal to that for the outputs generated by the server.

Table 1. Comparison between real and simulated environment results for 8
experiments

simulated 86.73% 35.91%
real 81.74% 36.14%
simulated 84.23% 46.76%
real 74.57% 48.22%
simulated 113.35% 36.71%
real 109.00% 38.01%
simulated 268.47% 12.31%
real 269.82% 12.40%
simulated 68.04% 78.25%
real 76.00% 72.60%
simulated 249.49% 10.22%
real 256.41% 10.01%
simulated 89.88% 73.79%
real 92.41% 74.00%
simulated 191.56% 10.08%
real 183.80% 12.34%

208 G. Macia-Fernandez et al.

Traces for the legitimate users as well as for the intruder have been issued for
collecting the necessary data to calculate the attack indicators.

Table [l shows the results obtained from eight different experiments taken
from the set of trials. For each different attack configuration, both simulation
and real environment values for UPP and E have been obtained. Note that in the
results there is a slight variation between the simulation and the real values, with
even better results in some cases in the real environment than in the simulated
one. These variations are mainly due to deviations in the estimation of RT'T and
the distribution of the service time. Nevertheless, the results obtained in the real
environment confirm the worrying conclusions extracted from simulation, that is,
the LoRDAS attack can achieve very high efficiency levels and its implementation
is perfectly feasible.

5 Conclusions and Future Work

The LoRDAS attack appears as a new kind of low-rate DoS attack that relies
on the presence of known timing mechanisms in the victim server. We have
shown that this attack is feasible, and an example for a persistent HT'TP 1.1
web server has been contributed for that. The attack can be carried out in such
a way that both the efficiency level and the traffic directed against the server
are adjustable, which allows the attacker to tune the attack parameters in order
to bypass possible detection mechanisms.

The effectiveness of the attack, in terms of the denial of service level and the
amount of traffic directed to the server, has been evaluated in simulated and
real scenarios, obtaining worrying results from both of them. Finally, a review
of the behaviour of the attack when the different parameters of the attack and
the server are changed is given.

Some further work is currently being made in this field, mainly focused on the
development of detection and defense techniques for these attacks to mitigate
their effects. The contributions of this study should be the starting point for this
work.

References

1. CERT coordination Center. Denial of Service Attacks,
http://www.cert.org/tech_tips/denial _of_service.html

2. Mirkovic, J., Reiher, P.: A taxonomy of DDoS attack and DDoS defense mecha-
nisms. SIGCOMM Comput. Commun. Rev. 34(2), 39-53 (2004)

3. Mirkovic, J., Dietrich, S., Dittrich, D., Reiher, P.: Internet Denial of Service. Attack
and Defense Mechanisms. Prentice-Hall, Englewood Cliffs (2004)

4. Kuzmanovic, A., Knightly, E.: Low Rate TCP-targeted Denial of Service Attacks
(The Shrew vs. the Mice and Elephants). In: Proc. ACM SIGCOMM 2003, August
2003, pp. 75-86 (2003)

5. Macid-Fernandez, G., Diaz-Verdejo, J.E., Garcia-Teodoro, P.: Assessment of a Vul-
nerability in Iterative Servers Enabling Low-Rate DoS Attacks. In: Gollmann,
D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp. 512-526.
Springer, Heidelberg (2006)

http://www.cert.org/tech_tips/denial_of_service.html

10.

11.

12.
13.

LoRDAS: A Low-Rate DoS Attack against Application Servers 209

Siris, V.A., Papagalou, F.: Application of anomaly detection algorithms for detect-
ing SYN flooding attacks. Computer Communications 29(9), 1433-1442 (2006)
Huang, Y., Pullen, J.: Countering denial of service attacks using congestion trig-
gered packet sampling and filtering. In: Proceedings of the 10th International Con-
ference on Computer Communications and Networks (2001)

Gil, T.M., Poleto, M.: MULTOPS: a data-structure for bandwidth attack detection.
In: Proceedings of 10th USENIX Security Symposium (2001)

Zaki, M.J., Li, W., Parthasarathy, S.: Customized dynamic load balancing for a
network of workstations. In: Fifth IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDC-5 1996), pp. 282-291 (1996)

Liu, Z., Niclausse, N., Jalpa-Villanueva, C.: Traffic model and performance evalu-
ation of Web servers. Performance Evaluation 46(2-3), 77-100 (2001)

Song, T.T.: Fundamentals of Probability and Statistics for Engineers. John Wiley,
Chichester (2004)

Network Simulator 2, http://www.isi.edu/nsnam/ns/

Fielding, R., Irvine, U.C., Gettys, J., Mogul, J., Frystyk, H., Berners-Lee, T.:
RFC2068, Hypertext Transfer Protocol - HTTP/1.1, Network Working Group
(January 1997)

http://www.isi.edu/nsnam/ns/

	Introduction
	Server Model
	Fundamentals of the LoRDAS Attack
	Basic Strategy for Carrying Out the Attack
	Design of the Attack

	Evaluation of the Attack
	Simulation Results
	Real Environment Results

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

