
Computer Networks 54 (2010) 2711–2727
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
Defense techniques for low-rate DoS attacks against application servers

Gabriel Maciá-Fernández *, Rafael A. Rodríguez-Gómez, Jesús E. Díaz-Verdejo
Dept. of Signal Theory, Telematics and Communications, E.T.S. Computer and Telecommunications Engineering, University of Granada,
c/Daniel Saucedo Aranda, s/n, 18071 Granada, Spain

a r t i c l e i n f o a b s t r a c t
Article history:
Received 14 October 2009
Received in revised form 15 February 2010
Accepted 4 May 2010
Available online 11 May 2010
Responsible Editor: Christos Douligeris

Keywords:
Denial of service
Low-rate
Defense
Network security
1389-1286/$ - see front matter � 2010 Elsevier B.V
doi:10.1016/j.comnet.2010.05.002

* Corresponding author. Tel.: +34 95824100
958240831.

E-mail addresses: gmacia@ugr.es (G. Maciá-Fe
correo.ugr.es (R.A. Rodríguez-Gómez), jedv@ugr.es (
Low-rate denial of service (DoS) attacks have recently emerged as new strategies for deny-
ing networking services. Such attacks are capable of discovering vulnerabilities in protocols
or applications behavior to carry out a DoS with low-rate traffic. In this paper, we focus on a
specific attack: the low-rate DoS attack against application servers, and address the task of
finding an effective defense against this attack.

Different approaches are explored and four alternatives to defeat these attacks are sug-
gested. The techniques proposed are based on modifying the way in which an application
server accepts incoming requests. They focus on protective measures aimed at (i) prevent-
ing an attacker from capturing all the positions in the incoming queues of applications, and
(ii) randomizing the server operation to eliminate possible vulnerabilities due to predict-
able behaviors.

We extensively describe the suggested techniques, discussing the benefits and draw-
backs for each under two criteria: the attack efficiency reduction obtained, and the impact
on the normal operation of the server. We evaluate the proposed solutions in a both a sim-
ulated and a real environment, and provide guidelines for their implementation in a pro-
duction system.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Denial of service (DoS) currently poses a severe chal-
lenge for researchers. DoS attacks are those which aim at
either completely or partially disrupting the availability
of a system or network. Traditionally, these attacks have
been classified into two categories [1]: (i) flooding attacks,
i.e., those which send a huge amount of traffic to a victim in
order to overwhelm its resources, and (ii) vulnerability at-
tacks, i.e., those which take advantage of a certain vulner-
ability in the victim and send specially crafted messages
which cause the denial of service.

Flooding attacks are difficult to counteract, mainly due
to their strength and because they are typically launched
. All rights reserved.

0/20048; fax: +34

rnández), rodgom@
J.E. Díaz-Verdejo).
from a large number of distributed locations (DDoS), what
allows the attacker to use IP spoofing and other sophisti-
cated evading techniques. However, this fact also consti-
tutes a certain weakness for the attack, as high-rate
traffic is more detectable and also the attacker needs to re-
cruit a high number of zombies to deliver the attack [2].

For this reason, attackers have recently moved to novel
strategies that allow them to launch flooding DoS attacks
without sending high-rate traffic to the victims. These are
mixed approaches between flooding and vulnerability at-
tacks in the sense that they get advantage of a certain vul-
nerability to reduce the traffic rate directed to the victim.
Some authors have warned that these attacks constitute
a considerable danger and that they may affect to impor-
tant Internet services [3].

In this respect, several kinds of low-rate DoS attacks
have been reported by researchers. The pioneer was the
Shrew attack against TCP [4]. The attacker sends a burst
of well-timed packets, creating packet losses in a link and

http://dx.doi.org/10.1016/j.comnet.2010.05.002
mailto:gmacia@ugr.es
mailto:rodgom@ correo.ugr.es
mailto:rodgom@ correo.ugr.es
mailto:jedv@ugr.es
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

2712 G. Maciá-Fernández et al. / Computer Networks 54 (2010) 2711–2727
therefore incrementing the retransmission timeout for cer-
tain TCP flows. The bursts are sent only around the expira-
tion times of these flows, thus reducing the overall traffic
rate employed by the attacker.

Another family of low-rate DoS attacks is constituted of
reduction of quality (RoQ) attacks [5], which attempt to de-
grade the performance of a victim by disrupting the feed-
back mechanism of a control system. This is done by
intelligently sending short bursts of traffic in such a way
that the own control system of the target is fooled and
causes the denial of service. These attacks have been stud-
ied in several scenarios, such as bottleneck queues with
Active Queue Management (AQM) employing Random
Early Detection (RED) [5], Internet end systems [6], dy-
namic load balancers [7], ad hoc networks [8] and content
adaptation controllers [9].

More recently, we have reported [10] another kind of
such attacks: low-rate DoS attacks against application
servers (henceforth LoRDAS). A LoRDAS attack is launched
against application servers in Internet and is able to reduce
their availability in a controlled way by sending short
bursts of traffic. These bursts are sent only around specific
instants, thus resulting in low-rate traffic. The efficiency of
this attack has been verified when it is applied to iterative
servers [11], i.e., those running a single thread or process,
as well as to concurrent servers [10].

The research community has invested considerable ef-
fort in the development of detection and counteracting
methods against Shrew and RoQ attacks (see details in Sec-
tion 2). However, to the best of our knowledge, no solu-
tions have yet been suggested to defeat LoRDAS attacks.
In this paper, we focus on this problem and suggest a de-
fense strategy against these attacks. We leverage mecha-
nisms based on specific management of incoming queues
to applications and suggest a solution based on slightly
modifying the server behavior under attack conditions. A
set of different alternatives for the solution is studied,
showing both the benefits and the drawbacks of each
one. These alternatives are also evaluated in both a simu-
lated and in a real environment. Finally, guidelines for their
implementation in a production environment are given.

The paper is structured as follows: Section 2 summa-
rizes related work on suggested techniques to defeat
low-rate DoS attacks, as well as existing approaches to de-
feat DoS attacks against application servers. Next, some
fundamentals about the LoRDAS attack are explained in
Section 3, while different alternatives for the defense are
described in detail in Section 4. Results derived from our
evaluation of the suggested techniques are shown in Sec-
tion 5. In Section 6, these results are also validated in a real
environment, and are subsequently discussed in Section 7.
Finally, some conclusions are drawn in Section 8.
1 Retransmission TimeOut of TCP.
2. Related work

In order to build defense strategies against LoRDAS at-
tacks, let us first pay special attention to techniques which
have been formerly employed to combat other kinds of
low-rate attacks. Although a general technique for all these
attacks would be desirable, at this moment only ap-
proaches designed to defeat specific attacks have been
proposed.

Next, we present related work on defenses against both
Shrew and RoQ attacks. In addition, we consider other sug-
gested solutions to defend applications against DoS
attacks.
2.1. Defenses against Shrew attacks

Due to the importance of these attacks, many authors
have concentrated on leveraging mechanisms to defeat
these attacks. The main difference between Shrew attacks
and LoRDAS consists on the fact that Shrew is TCP targeted,
whilst LoRDAS works at the application level. Moreover,
they exploit different vulnerabilities, i.e., determinism in
the TCP congestion control mechanism timeout (Shrew)
and existence of deterministic service times in applications
(LoRDAS). Furthermore, Shrew attack attempts to trigger
the TCP congestion control mechanism by creating outages
in a link, while LoRDAS simply seeks to overflow a service
running in a machine, not creating any network congestion
at all.

Regarding the defense mechanisms for Shrew attacks,
some authors are only interested in detection while others
also develop mitigation mechanisms. Sun et al. [12] sug-
gest that the ON/OFF traffic pattern of the attack can be de-
tected by combining the autocorrelation of the traffic rate
signal and the use of dynamic time warping (DTW) [13].
They also suggest the use of the same technique in a dis-
tributed environment [14].

Others try to detect the attack by analyzing the fre-
quency information of traffic flows, either by spectral anal-
ysis [15] or by considering the correlation between the ON/
OFF traffic rate signal and the round trip time of the af-
fected flows [16].

In this paper, we focus not only on detecting attacks,
but also on developing a response technique that aims at
reducing the attack impact. In this line, some previous
work for Shrew attacks has been carried out. Yang et al.
[17] suggested to randomize RTO1 timers in TCP flows in or-
der to avoid the synchronization between the periodic arri-
val of short attack bursts and the timer expiration. As we
show later on, some of the mechanisms suggested in this pa-
per for LoRDAS attacks are inspired in the latter idea. The
main flaws of this approach are the impact on the protocol
performance and the need for modifying the protocol stack,
which implies a slow deployment. Sarat et al. [18] studied
the evolution of router buffer sizes during the execution of
Shrew attacks; they demonstrated that an increase in the
router queues sizes would compel the attacker to use
high-rate traffic. As shown below, this work has similarities
with ours in the sense that it suggests the modification of
the queues. Still, there are important differences. First, it fo-
cuses on router queues, while ours works with application
incoming queues. Second, we modify the queue manage-
ment process instead of simply increasing a queue size, as
this would not be enough to constitute a solution for the
LoRDAS attack.

G. Maciá-Fernández et al. / Computer Networks 54 (2010) 2711–2727 2713
2.2. Defenses against RoQ attacks

RoQ attacks have also attracted attention from the re-
search community, which has made a big effort to defeat
them. The main difference between these attacks and LoR-
DAS is that RoQ attacks get advantage of the transient
mechanisms of the systems, whilst LoRDAS uses an estima-
tion of the service time for the requests employed by an
application server. Furthermore, the way that both attacks
exploit the vulnerability are different. RoQ attacks send
short high-rate traffic bursts to the victim while attack
bursts in LoRDAS practically consist of less than five attack
packets.

Some strategies have been learnt and are applied here
from the previous Shrew attack experience. Chen and
Hwang [19] suggested the use of spectral analysis tech-
niques to detect these attacks. Shevtekar and Ansari [20]
proposed a router-based technique for detection, which
consists in measuring traffic increments during short peri-
ods of time and comparing these increments with a thresh-
old. Another approach has been contributed by Argyraki
et al. for the detection of RoQ attacks in ad hoc networks
[21]. These authors analyse the frequency of RTS/CTS mes-
sages in the virtual carrier sensing process to detect a sig-
nature that identifies RoQ attacks.

2.3. Defenses against DoS directed against applications

Some authors have addressed the problem of protective
applications from the threat of DoS attacks. Srivatsa et al.
[22] suggest a set of protecting measures for web servers,
mainly based on a congestion control system that uses port
hiding and client prioritization. This system focuses on DoS
attacks in general and does not consider the low-rate type
as a specific case. Ranjan et al. [23] recently presented a
solution that analyzes the traffic directed to an application
and applies certain policies to the incoming traffic. There
are similarities with our work in the sense that given pol-
icies are enforced by applying an access control mecha-
nism in the incoming queues. The main difference
between our approach and that in [23] is that the latter
is not specifically designed for low-rate traffic. While it
suggests a detection process based on traffic rate measure-
ments, we detect attack requests by considering temporal
and spatial similarities between them. Besides, the solu-
tion suggested in [23] is implemented in a proxy, while
our proposal is located at the servers themselves. This im-
Fig. 1. Application server mod
plies that the two solutions are complementary and may
contribute to the concept of security in depth, thus allow-
ing security officers to deal with both external attackers
(accessing through the proxy) and insider attackers. Final-
ly, what we suggest is a lightweight alternative which
avoids the need to compute of a complex detection algo-
rithm and the need for communication between the appli-
cation and a proxy as in [23].
3. LoRDAS attack fundamentals

Application servers are the potential victims of LoRDAS
attacks. Certain conditions are required for an application
to be vulnerable to this kind of attacks, and several differ-
ent strategies might be followed by the attacker to deny
the service. Here, we present the fundamentals of the
behavior of application servers, and the overall process fol-
lowed to deliver a LoRDAS attack. We focus only on the
necessary details for understanding the defense techniques
explained in Section 4, referring to [11,10], for more
details.

The application server model considered in the LoRDAS
attack is composed of the following elements (Fig. 1): (i) a
service queue where incoming requests are placed upon
their arrival at the server, and (ii) one or several service
modules which are in charge of processing the requests.

The service queue is a finite-length queue where re-
quests are stored. When the queue is full, any new incom-
ing request is rejected (event message overflow MO in
Fig. 1). The service modules are really processes or threads
that attend those requests queued in the service queue. Re-
quests are extracted from the service queue following a
certain queue serving policy, e.g., FIFO, LIFO, etc. Once a
service module has finished processing a request, an an-
swer is sent to the corresponding client. This is termed an
answer instant. Note that when an answer is sent by the
server, the corresponding service module becomes idle.
Then, if any pending request is waiting in the service
queue, it is extracted, thus freeing a new position in the
queue. We denote the instants at which new positions
are enabled in the service queue as enabling instants. At
first sight, it could seem obvious that answer instants and
enabling instants occur at the same time and, thus, they
could be defined as a single concept. However, we prefer
to keep these two concepts separate, as they will play dif-
ferent roles when defense techniques are applied.
el in the LoRDAS attack.

2 In an Apache 2.0 server, the directive KeepAliveTimeout controls this
timeout.

2714 G. Maciá-Fernández et al. / Computer Networks 54 (2010) 2711–2727
From a request perspective, let us define two concepts
for subsequent use in the evaluation of defense techniques,
as detailed later. Let the service time, ts, be that employed
by the service module in processing a given request. As dis-
cussed in [10], even if identical requests are considered,
the service time for their processing might be different,
as several multiple factors influence this time, e.g., memory
and disk use, number of CPU interruptions, network traffic,
etc. For this reason, the service time for identical requests
is modeled in [10] as a random variable, TS, with a normal
distribution. Its mean value is denoted as TS, and its vari-
ance as var[TS].

TS ¼ NðTS;var½TS�Þ: ð1Þ

Let the in-system timefor a request, tI, be the time elapsed
between its arrival and the generation of the correspond-
ing answer. The in-system time is contributed by the time
spent by a request while in the service queue, plus the cor-
responding service time. Let us consider an example con-
sisting of a server with only one service module, i.e., a
single process or thread, and a service queue of N positions.
Let us assume also that the queue contains N � 1 requests,
and that they are all processed by the service module at a
rate of ts seconds per request. If we evaluate tI for a new
incoming request in this scenario, an interval of possible
values is obtained, depending on the amount of time still
needed to serve the request located in the service module.
This interval is given by:

tI ¼ Nts; ðN þ 1Þts½ �: ð2Þ

The aim of the LoRDAS attack is to send traffic in such a
way that it makes the server process only those requests
coming from the attacker instead of from legitimate users.
This is similar to preventing legitimate users from storing
any request in the service queue of the server by keeping
it completely full of requests coming from the attacker.
In a traditional approach, this could be done by using high
rate traffic (flooding DoS attack). However, what the at-
tacker actually does here is to estimate those instants at
which free positions are enabled in the service queue (en-
abling instants), and to send traffic only around them. Fol-
lowing this strategy, the amount of traffic used in
delivering the attack is considerably reduced (low-rate
DoS attack). An overview of the complete process for carry-
ing out the attack is now described.

As a previous step to carrying out the attack, the LoR-
DAS attacker estimates the service time for one or several
types of identical requests (see more details below). Then,
using this knowledge, the attacker is able to forecast the
answer instants at the server, which enables the attacker
to know also the enabling instants, as they coincide. We
provide in the following an example on how this is really
done, and refer to [10,11] for more details about different
strategies for carrying out this preliminary step.

Consider a web server that implements the persistent
connections feature. First, the attacker sends an HTTP re-
quest, which is stored in the service queue. Then, when
reaching the service module after a queue time, the server
sends an HTTP response containing the requested resource.
After that, the server waits for the expiration of a persistent
connection timeout before shutting down the connection.
This timeout is typically a preconfigured fixed value in
the server2 which stands for every TCP connection, no mat-
ter what resource is requested. In this process, it is easy for
the attacker to estimate the time elapsed between the HTTP
response and the connection shutdown, just by sending sev-
eral requests to probe the server. This time plays the role of
the service time, ts, in the LoRDAS attack server model. Next,
by using this knowledge, the attacker estimates the answer
instants. In this example, the answer instants are those at
which the TCP connections are closed. Considering the func-
tioning of the server, an answer instant will occur ts seconds
after an HTTP response is sent. As mentioned previously, this
instant is also an enabling instant, as the next request waiting
in the service queue will be extracted by the recently idle
service module.

After forecasting the answer instants, the attacker is
able to send traffic in such a way that it intentionally ar-
rives at the server around the estimated enabling instants.
As previously discussed, although certain requests have a
constant service time, i.e., persistent connection timeout
in our example, the attacker would perceive this time as
a normal distribution variable (Expression (1)). For this
reason, the attacker sends not only one request that arrives
just after every enabling instant, but short bursts of traffic
that arrive around the forecasted instants to avoid failing
to seize the enabled positions in the queue due to the var-
iance of the service time.

Additionally, the LoRDAS attack incorporates another
mechanism for dealing with the possibility that short
bursts of traffic may not succeed in seizing the enabled
queue free positions. Every time that a new answer, i.e., a
connection shutdown in our example, is received from
the server, a new attack request is sent to the server.
Fig. 2 shows the whole process for acquiring a position in
the queue once an enabling instant is estimated. First, a
short burst of three attack packets is sent to the server.
Note that there is a difference between the estimated en-
abling instant (around which the attack burst is centered)
and the real answer instant. This difference is due to the
fact that ts really follows a normal distribution as in
Expression (1). In the figure, the second packet in the short
burst of attack traffic will occupy the free position in the
queue. Still, when the answer reaches the attacker, a new
attack request is sent to the server.

The LoRDAS attack is designed in such a way that multi-
ple attack threads are executed at the same time. Every at-
tack thread tries to ensure, by sending attack requests, that
at least one request is always present in the service queue.
This means that, if the attacker would like to completely
deny the service, the number of threads on the attacker
side should correspond with the number of attacked posi-
tions in the service queue. Note that the attacker might not
only to completely deny the service, but also to partially
reduce the availability of the server, i.e., by dimensioning
a number of attack threads lower than the size of the ser-
vice queue, and also to strike the attack from distributed
locations.

Fig. 2. LoRDAS attack process for seizing a position in the service queue once an enabling instant has been estimated.

G. Maciá-Fernández et al. / Computer Networks 54 (2010) 2711–2727 2715
Once an attack thread has inserted a request into the
service queue, the process described above can be exe-
cuted. Thus, the insertion of a request is a pre-requisite.
For this reason, whenever an attack thread has not com-
pleted this pre-requisite (possibly because a legitimate
user has does so instead of the attack thread), the attack
thread tries blindly to seize a new position. At this stage,
we say that the attack thread is in the flooding state.

A good defense technique should try to prevent the at-
tacker from gaining any advantage over legitimate users.
Thus, the aim is to make all the attack threads go into
the flooding state. In this state, the probability of an attack-
er inserting a request into the service queue depends only
on its traffic rate and not on the attacker’s ability to exploit
a vulnerability. Obviously, in this situation a low-rate traf-
fic is not enough for the attacker.

4. Proposals on defenses against the LoRDAS attack

As explained above, the success of a LoRDAS attack is
based on the exploitation of two different aspects in server
behavior: (i) the existence of deterministic patterns, e.g.,
fixed timeouts, which makes it possible to estimate the in-
stants at which answers are sent to the corresponding cli-
ents (answer instants) and (ii) the fact that enabling instants
concur at the same time as answer instants, i.e., positions in
the service queue are enabled just at the instants at which
the answers are sent. As a consequence, the design of de-
fense techniques against LoRDAS attacks should be based
on trying to modify the server behavior in such a way that
these two aspects are not exploitable.

For the development of such defense techniques we fo-
cus on achieving the following two goals:

� The efficiency of the attack should be reduced as much
as possible. We define the efficiency of the attack, E, as
the percentage of service queue positions seized by
the attacker over the total number of seized positions
during the attack execution. Note that we do not con-
sider a measure of the efficacy of the defense technique
based on the observation of the percentage of served
requests coming from legitimate users. The reason is
that this latter metric depends on the legitimate users’
traffic. Our metric measures the percentage of the ser-
ver capacity that is dedicated to serve attack requests.
The remaining capacity is therefore used for serving
legitimate users’ requests.
� The impact of the defense technique on the normal

behavior of the server under no attack conditions
should be minimized. We assess this impact by compar-
ing the in-time system experienced by requests when
none of the defenses is active (Expression (2)), and
when the different defense techniques are applied.

In the following, we provide some approaches that con-
stitute defense techniques to reduce LoRDAS attack effi-
ciency. They are presented following an incremental
approach, in which every one produces additional benefits,
compared to the previously presented techniques. For each
one, a motivation of its strategy is explained, the technique
itself is described in detail and both the benefits and the
shortcomings are discussed. Subsequently, an evaluation
study of these techniques in an experimental environment
is presented in Section 5.

For all the techniques presented, we assume that the
server is in an overflow state, i.e., the service queue is com-
pletely full of requests. In Section 7 we discuss the use of
these techniques in other scenarios.

4.1. Random service time (RST)

The Random service time defense, RST, is designed to re-
duce the predictability of server behavior. This is done by
eliminating deterministic patterns from its mode of opera-
tion. Whenever a fixed timeout or other exploitable feature
is used in the server, this technique aims at randomizing it,
in order to make things harder for the attacker, i.e., it hin-
ders the prediction of the answer instants and, conse-
quently, also of the enabling instants.

A server implementing RST works as in the following
(see attack process in Fig. 3):

(1) Service of a request in the queue. When idle, a service
module takes a request from the service queue fol-
lowing an established scheme, e.g., FIFO, LIFO, etc.
Then, the service module employs ts seconds to

Fig. 3. LoRDAS attack process for seizing a position in the service queue when RST defense is active.

3 The details for this adaptive process are given in [11].

2716 G. Maciá-Fernández et al. / Computer Networks 54 (2010) 2711–2727
process the request. During this phase, the attacker
manages to send a short attack burst in such a way
that it arrives around the estimated answer time.

(2) Extra delay. When the processing is finished (t0 in
Fig. 3), the service module remains locked during
an additional random time, called extra delay, DtRST.
In this case, unlike the normal behavior (depicted in
Fig. 2), no additional position is enabled in the ser-
vice queue during DtRST, as no answer is generated.

(3) Sending of the answer. After the extra delay (t1 in
Fig. 3), the answer is sent to the user that previously
requested the service. Due to the functioning of the
server, a new free position appears in the service
queue just at this instant, thus concurring both the
enabling instant and the answer instant. If DtRST is
long enough, as in the figure (we make this assump-
tion now and discuss other possibilities later), dur-
ing the period of time from t1 until t2, i.e., a period
of duration RTT (round trip time) seconds, a legiti-
mate user can insert a request in the queue. In t2, a
new attack request arrives and, if the position still
remains free, it is occupied.

With respect to the efficiency of the attack, the applica-
tion of RST in the server has two remarkable consequences:
first, the answer instant is moved to a position not con-
trolled by the attacker; second, an additional variance,
compared to that originally perceived by the attacker, is
introduced. Let us study both of them in greater detail.

(i) First, RST shifts the answer time to a position that is
not controlled by the attacker. If the extra delay is long en-
ough (as in Fig. 3) and the service queue is full of requests
during the attack burst, then all the attack burst traffic will
be rejected by the server. In this case, the period of time
available for a legitimate user to insert a new request in
the queue would correspond to the round trip time be-
tween the server and the attacker, RTT, i.e., the period of
time between the answer instant (t1 in Fig. 3) and the
reception of the attack packet sent as a response to the an-
swer (t2 in Fig. 3). As shown, it is desirable that RST should
shift the answer time out of the attack burst arrival in such
a way that, during RTT seconds, a new position in the
queue is available for legitimate users.

However, when an extra delay is added to the original
service time ts, the attacker also perceives an increase in
the estimation of ts equal to the mean extra delay, DtRST ,
and, thus, will adjust the attack parameters3 in order to
synchronize the attack bursts in such a way that they arrive
around Ts þ DtRST . Considering this attack adaptation pro-
cess, when bursts of B seconds arrive from the attacker,
RST should ideally be adjusted in such a way that the answer
time is shifted to either just after the attack bursts arrive
(condition 1: Dt > DtRST þ B=2) or RTT seconds before (condi-
tion 2: Dt < DtRST � B=2� RTT). Only in these cases are we
assured that legitimate users will have RTT seconds for
inserting requests in the queue. For this reason, assuming
that the server is able to estimate the values for RTT of
the attacker and B (we discuss how this is done in Section
5.3), Dt is calculated as follows.

Condition 2 cannot be fulfilled if DtRST < B=2þ RTT. In
this case, DtRST takes values from a uniform distribution
with a maximum value DtRST

max:

Dt ¼ U 0;DtRST
max

� �
if DtRST <

B
2
þ RTT ð3Þ

and only in this case will legitimate users not have free
positions available for RTT seconds but only for DtRST

seconds.
When DtRST > B=2þ RTT, DtRST is a random variable

sampled from two different uniform variables, V1 = U[0,
Dt1] and V2 ¼ U½Dt2;DtRST

max� (see Fig. 4), in such a way that

Dt ¼ DtRST
max

2
;

Dt1 ¼ max 0;DtRST � B=2� RTT
� �

;

Dt2 ¼ DtRST þ B=2:

ð4Þ

Fig. 4. Intervals in the uniform distribution for Dt.

G. Maciá-Fernández et al. / Computer Networks 54 (2010) 2711–2727 2717
Note that the value of the mean extra delay should be
DtRST ¼ DtRST

max=2 in order to appropriately shift the answer
time. For this reason, DtRST is really sampled from the vari-
ables V1 and V2 following a probability P in such a way that

DtRST ¼
V1 with prob: P

V2 with prob: 1� P

�
ifDtRST > B=2þ RTT;

ð5Þ

where the probability P is calculated from the following
condition:

DtRST ¼ P � E½V1� þ ð1� PÞ � E½V2� ¼
DtRST

max

2
; ð6Þ

which leads to

P ¼ DtRST
max þ B

2 DtRST
max þ Bþ RTT

� � : ð7Þ

(ii) Second, RST introduces an extra variance to that origi-
nally perceived by the attacker, var[ts]. This variance is gi-
ven by the implicit variabilility in the extra delay, var[D
tRST]. For this reason, it is expected that the attack will be
less efficient. The only option for the attacker to avoid
the effect of this extra variability is to enlarge the duration
of the attack bursts, which would not be desirable, espe-
cially when the traffic rate needs to be low in order to hide
the attack.

In summary, it could be said that RST is able to decrease
the attack efficiency mainly because it shifts the answer
time to a position not controlled by the attacker, and be-
cause it adds a source of variability in the server behavior.

With respect to the impact of RST on the normal behav-
ior of the server, a notable shortcoming appears when this
defense is employed: the in-system time increases for every
request when RST is active. Let us evaluate tI in the same
example considered in Expression (2), i.e., a server with a
single service module, N � 1 equal requests in the queue
and another one in the service module, all of them involv-
ing a service time ts. In this case, ts is incremented by the
extra delay for all the requests, thus causing a delay to
the other requests waiting in the queue. Taking a mean va-
lue DtRST for all the requests, tI becomes

tRST
I ¼ ½N � ðts þ DtRSTÞ; ðN þ 1Þ � ðts þ DtRSTÞ�; ð8Þ

which means that a minimum increase of N � DtRST is expe-
rienced in tI for every request. Obviously, a selection of a
high value for DtRST

max implies that RST is more efficient in
defending against the attack but, as shown, it also implies
a higher impact on the service. In Section 5, an evaluation
of this configuration value is made.

Finally, note that the configuration value for DtRST, given
by Expressions (3) and (5) depends on the value of RTT.
Obviously, this value vary between each incoming request
to the server. Here, we have assumed a constant value for
RTT; in Section 7 we discuss the configuration of DtRST in a
realistic scenario where different RTT values are present.

4.2. Random answer instant (RAI)

A second option for deploying defense schemes, called
Random answer instant, RAI, is now presented. In this tech-
nique, instead of introducing variability in the server
behavior as in the RST defense, we explore how to defeat
the attack by decoupling the answer instants and the en-
abling instants. As the attacker sends attack bursts in such
a way that they arrive around the answer instants, a coun-
termeasure based on forcing the enabling instants to hap-
pen at a different time will make the attacker fail.

This is done by following these steps (see Fig. 5):

(1) Service of a request. As in RST, the service module
extracts a request from the service queue and pro-
cesses it during a service time, ts.

(2) Non-blocking extra delay. When the processing is fin-
ished (t0 in Fig. 5), the service module waits for an
additional random time (extra delay), before send-
ing the response. However, as a key difference with
RST, when the service has finished, the service mod-
ule extracts a new request from the service queue
and begins its processing. Thus, we say that the extra
delay is non blocking. A new position is enabled in
the queue at this instant; therefore, t0 becomes the
enabling instant.

(3) Delayed response sending. When the extra delay
expires, i.e., at t0 + DtRAI, the answer is sent to the
corresponding client. This is the answer instant,
which now differs from the enabling instant.

Note in this process that the attacker is estimating a
service time given by Ts þ DtRAI and, thus, is sending a short
attack burst that arrives around this instant. However, the
enabling instant is happening before the answer instant, so
that legitimate users have more time to insert new re-
quests in the queue. In the example in Fig. 5, a new posi-
tion is available for requests coming from legitimate
users during the interval delimited by the enabling instant
and the arrival of the first attack packet of the burst, that is,
t1 � t0.

The selection of the value for DtRAI is now discussed. As
previously indicated, it is desirable to make the attacker
perceive an increased variability in the service time; for
this reason, DtRAI is chosen from a uniform distribution,
Dt ¼ U½DtRAI

min;DtRAI
max�. The lower limit of the distribution,

DtRAI
min, is selected in such a way that the difference between

the enabling instant and the answer instant is higher than
half of the attack burst length, i.e., DtRAI

min ¼ B=2. Thus, we
ensure that there is a time interval of duration DtRAI � B

2 be-
tween the enabling instant and the arrival of the short at-
tack burst. In summary:

Fig. 5. LoRDAS attack process for seizing a position in the service queue when RAI defense is active.

2718 G. Maciá-Fernández et al. / Computer Networks 54 (2010) 2711–2727
Dt ¼
0 ifDtRAI

max <
B
2

U B
2 ;DtRAI

max

� �
ifDtRAI

max P B
2 :

(

As a first approach, the upper limit value, DtRAI
max, should be

as high as possible in order to introduce higher variability.
However, if we analyze the impact of this measure by eval-
uating tI, we obtain an interval of possible values given by

tRAI
I ¼ N � ts þ DtRAI; ðN þ 1Þ � ts þ DtRAI½ �; ð9Þ

which is really an increment of DtRAI with respect to the
normal behavior given by Expression (2). This means that
a higher value for DtRAI

max also generates a higher impact in
the normal behavior. Really, DtRAI

max should be configured
as a trade-off between reducing the impact and increasing
the variability in the server. In Section 5, we evaluate con-
figuration values for this parameter in a wide range of
scenarios.

In summary, the main contribution of this technique,
compared to RST, is the reduction of the impact on the nor-
mal behavior of the server, while the effectiveness of the
attack is reduced. In Section 5 we provide a comparative
study of both the effectiveness and the impact of these
techniques.
4.3. Random time queue blocking (RTQB)

As shown before, RST and RAI are techniques for reduc-
ing the effectiveness of the attack. However, they present
some limitations. First, the reduction of effectiveness in
RST is limited due to the fact that the maximum amount
of time for legitimate users to seize new positions in the
queue is RTT. RAI does not present this limit but, like RST,
it implies the cost of introducing an impact on the server
behavior. Although the impact could be acceptable, espe-
cially if we consider that the server is potentially under
an attack or, at least, under overflow conditions, it would
be desirable for a defense technique not to cause any
impact.
Random time queue blocking, RTQB, is a defense tech-
nique that aims at reducing the attack efficiency whilst
causing no impact on the server behavior. The basic idea
behind RTQB is as follows. Let us suppose that the attacker
is able to accurately estimate the answer instants at the ser-
ver. Then, the short attack bursts will arrive around these
instants. If the answers are really sent at these answer in-
stants, a response attack message will arrive in RTT sec-
onds. In this scenario, while legitimate users are
distributing their requests (generally as a poisson process)
during this time, the attacker is really concentrating the re-
quests in a time interval [�B/2,RTT] around the answer in-
stants, B being the size of the attack burst. Thus, the idea
here is to block all the requests that arrive at the server
during this time interval.

Note that RTQB, as described here, can be thought of as a
mechanism that generates DoS itself. Yet, if RTQB is not ac-
tive, DoS intervals are not controlled by the server, while
applying DoS intervals are concentrated around answer in-
stants, thus making the attacker more penalized.

The execution of RTQB is done following these steps (see
Fig. 6):

(1) Service of a request. The service module extracts a
request from the service queue and processes it dur-
ing a service time, ts.

(2) Answer generation. When the processing is finished,
the service module sends the corresponding answer
(answer instant), and extracts a new request from the
service queue (enabling instant).

(3) Blocking time. After the answer instant, new incoming
requests are rejected during a time interval DtRTQB.
After this time, new incoming requests are accepted
again.

Note that, although in this process the answer instants
and the enabling instants may seem to happen at the same
time (step 2 of the process), the existence of a blocking
time just after the answer instant virtually shifts the en-
abling instant, as no new requests are allowed to enter

Fig. 6. LoRDAS attack process for seizing a position in the service queue when RTQB defense is active.

4 We are assuming that an attack burst is sent from a single location, as it
would be almost unfeasible for the attacker to efficiently synchronize the
traffic from several locations affected by different network variability

G. Maciá-Fernández et al. / Computer Networks 54 (2010) 2711–2727 2719
the queue before DtRTQB finishes. Thus, it may be said that
this technique is based on decoupling answer instants from
enabling instants.

Ideally, the value for DtRTQB should be RTT, as all the at-
tack requests are expected in an interval [�B/2,RTT]
around the answer instant. However, we suggest configur-
ing D tRTQB as a random value taken from a uniform
distribution:

DtRTQB ¼ U RTT; DtRTQB
max

� �
: ð10Þ

There are two reasons for considering a random value.
First, the attacker’s estimation of both the answer instants
and RTT may not be perfect and, thus, attack packets may
arrive even after RTT seconds from the answer instant. Sec-
ond, it is recommendable to introduce a certain variability
into the process, as previously discussed. Otherwise, the
attacker might be capable of estimating the value DtRTQB

and adapting the attack. In Section 5, we evaluate the influ-
ence of the parameter DtRTQB

max , as well as the efficiency really
obtained by RTQB.

Similarly to the case of RST, the configuration of D tRTQB

following Expression (10) depends on the value of RTT.
Obviously, this value may be different for every incoming
request to the server. Although we have assumed here a
constant value for RTT, in Section 5.3 we discuss the config-
uration of DtRTQB in a realistic scenario where different RTT
values are present or RTT could take a large value.

Finally, regarding the impact of RTQB on the server
behavior, it is clear that once a request enters the service
queue, there is no difference in its process when RTQB is
active. Thus, no impact is present due to the use of this
technique. We explore this fact also in Section 5.

4.4. Improved Random Time Queue Blocking (IRTQB)

As previously described, RTQB takes advantage of the
fact that the attacker uses short bursts of traffic that arrive
around the answer instants, while any incoming request in
a time interval around them is blocked. The main problem
with RTQB is that it does not selectively choose requests
during the blocking interval, but it discards all of them.
An improved version of RTQB, called Improved Random
Time Queue Blocking, IRTQB, is here introduced. Derived
from RTQB, IRTQB is also based on discarding requests dur-
ing a time interval around the answer instants. However,
the main difference is that here an algorithm selectively
chooses those requests that potentially comes from the at-
tacker and, consequently, it is only these that are dis-
carded. This algorithm is based on measuring the
similarity between incoming requests.

As known, the attacker delivers the attack by sending
several attack messages as short bursts4. As answers should
reach the attacker in order to allow the attack to be read-
apted and a response attack packet sent, the attacker can
only use restricted spoofing mechanisms. This means that
spoofing is only allowed within the same network segment;
otherwise, the attacker would not be able to sniff answers
coming from the server.

In summary, it is expected that the attacker’s requests
will have a temporal similarity, i.e., they arrive in a time
interval around the answer instants, and also a spatial sim-
ilarity, i.e., the attack requests are forced to follow certain
communication rules given by transport and network layer
protocols.

We define a spatial similarity metric, SSM, between two
requests to measure the probability that they come from
the same source. Although many factors could be included
in SSM, e.g., time-to-live of incoming requests, sequence
numbers, source IP addresses, etc., we are only interested
in the analysis of the inclusion of an algorithm of this class
in the defense technique. Thus, we choose a simple metric
that considers only the source IP addresses of incoming
requests.

The proposed metric is based on the common prefix
length between two considered IP addresses. For two gen-
eric IP addresses Ai and Aj, we compute the similarity met-
ric as the number of consecutive bits set to ’1’ (starting
from the most significant bit) in the bit XNOR operation
of the two addresses:

SSMðAi;AjÞ ¼ # consecutive bits1ðAiXNORAjÞ: ð11Þ

Table 1
Summary of configuration values for the attack and the server parameters
in Scenario 1 (S1), Scenario 2 (S2) and Scenario 3 (S3).

Parameter Value

Duration of attack burst, B 0.4 s
Time between attack packets in a burst 0.2 s
Mean service time, Ts 12 s
Variance of server, var[Ts] 0 (S1), 0.2 (S2, S3)
Interval between legitimate

users’ requests, k
3 s (S1, S2), 0.95 s (S3)

Number of server threads 1(S1, S2), 4 (S3)
Number of positions in service queue, N 4(S1, S2), 8 (S3)
Number of attack threads = N
Attack duration 50,000 s
Round trip time, RTT 1 s
Similarity metric, ST 32

2720 G. Maciá-Fernández et al. / Computer Networks 54 (2010) 2711–2727
For example, the similarity between the IPv4 addresses
192.168.20.3 and 192.168.24.3 would be 20. This spatial
similarity metric is a measure of the probability that two
IP addresses are in the same network. In order to decide
whether a request comes from the attacker or not, there
also exists a similarity threshold, ST, in such a way that if
SSM(Ai,Aj) > ST, Ai and Aj are considered similar, and not
otherwise.

The algorithm followed in IRQTB is shown in the Algo-
rithm 1 diagram. We explain it now in detail.

IRQTB maintains a list of answer instants as long as they
are happening in the server. As in RTQB, around every an-
swer instant, e.g., t0, a time interval exists, denoted as the
attack interval. This indicates when attack packets are
likely to arrive and, thus, they could potentially be dis-
carded. If the length of an attack burst is B, the attack inter-
val is t0 � B=2; t0 þ DtIRTQB

max

� �
. Note that requests coming

before an answer instant do not enter the service queue,
as no free positions exist under the assumption of overflow
state in the server. However, these requests give useful
information to decide whether requests coming after the
answer instant are attack requests or not. For this reason,
the attack interval begins at t0 � B/2.

IRQTB also maintains a record of the timestamps and
the source IP addresses for all incoming requests. Upon
the arrival of a new request, the set of attack intervals that
comprise the timestamp of the incoming request is ob-
tained. Then, the similarity between the incoming request
and every request that arrives within this set of attack
intervals is computed. If the similarity is higher than the
threshold ST for any two requests, then both are discarded.
When discarded, no notification is sent to the client, in or-
der to avoid a potential attacker getting information on
this process.

Algorithm. Algorithm for the execution of IRTQB

For every answer

{
Insert the answer instant in a list

Compute attack interval for the answer

}

For every incoming request Ri

{
Record timestamp, source IP

AI = attack intervals for Ri->AI
For all requests Rj in AI

{
If SSM (Ri, Rj)>ST then

Discard Ri and Rj

}
}

In the configuration of IRTQB only two parameters ap-
pear, DtIRTQB

max and the similarity threshold, ST. DtIRTQB
max is con-

figured following the rules previously explained for this
parameter in the case of RTQB (Section 4.3). Regarding ST,
this is a parameter that could be used to improve the accu-
racy of the algorithm. As previously discussed, the optimi-
zation of this algorithm is beyond the purpose of the paper,
as we are only interested in the design of a defense tech-
nique that allows us to incorporate this kind of mecha-
nisms. However, a brief consideration can be made here:
the selection of a low value for ST is equivalent to consid-
ering that all the requests are spatially similar and, thus, to
discarding all the requests within an attack interval. This
would be the case of RTQB, in which all the requests are
discarded.

5. Experimental evaluation of techniques

In this section, we experimentally evaluate the defense
techniques previously described in this paper. For this pur-
pose, an implementation in Network Simulator 2 [24] of
both the attack and the server is used.

We evaluate the performance of the attack by measur-
ing both the in-system time, tI, and the attack efficiency, E.
Recall that E is the percentage of service queue positions
seized by the attacker over the total number of positions
seized during the attack execution, while tI represents
the time from when a request enters the server to the in-
stant at which its corresponding answer is sent.

5.1. Experimental framework description

A full implementation of the attack, as described in [10],
is employed, i.e., the use of multiple attack threads implies
that they share information about the connections to the
server and once a thread has non-attended connections it
allows others to attend them by sending corresponding
short bursts of attack traffic.

The server is able to make separate use of the different
defense techniques explained here. As described in Section
4, the only configuration parameters for RST, RAI and RTQB
are DtRST

max;DtRAI
max and DtRTQB

max , respectively, whereas only for
IRTQB does an additional configuration parameter appear,
i.e., the similarity threshold, ST.

Legitimate users generate traffic requests following a
Poisson distribution (exponential inter-arrival times). The
time interval between legitimate users’ requests is denoted
by k.

A wide range of different server scenarios are tested.
These are designed by modifying the values for the mean

G. Maciá-Fernández et al. / Computer Networks 54 (2010) 2711–2727 2721
service time for attack and legitimate users’ requests, Ts,
server variance, var[Ts], round trip time, RTT, number of
threads in the server, size of the service queue, N, and traf-
fic rate of legitimate users, k. For the purpose of showing
our results here, we have defined three different scenarios:

� Scenario 1, S1: the server is monothreaded (a single exe-
cution thread is running in the server), and the variance
of the service time for attack requests, var[Ts], is 0. Here,
a deterministic behavior of the server allows a clear
observation of the effects of a given defense technique.
 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12

At
ta

ck
 e

ffi
ci

en
cy

, E

Δtmax (seconds)

RST
RAI

RTQB

(a) Scen

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12

At
ta

ck
 e

ffi
ci

en
cy

, E

Δtmax (seconds)

RST
RAI

RTQB

(b) Sce

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12

At
ta

ck
 e

ffi
ci

en
cy

, E

Δtmax (seconds)

RST
RAI

RTQB

(c) Sce

Fig. 7. Attack efficiency and mean in-system time obtained dur
� Scenario 2, S2: here we explore the influence of intro-
ducing variance into the behavior of the server. Thus,
we use the same configuration as in Scenario 1, but
modifying the server variance, var[Ts].
� Scenario 3, S3: the aim of this scenario is to check how a

multithread operation in the server affects the perfor-
mance of a given defense technique. We extend Sce-
nario 2 by using a multithreaded version of the server.

In the results described in the following, the configura-
tion values used for both the attack and the server
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 0 1 2 3 4 5 6 7 8 9 10 11 12

M
ea

n
in

-s
ys

te
m

 ti
m

e

Δtmax (seconds)

RST
RAI

RTQB

ario 1

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 0 1 2 3 4 5 6 7 8 9 10 11 12

M
ea

n
in

-s
ys

te
m

 ti
m

e

Δtmax (seconds)

RST
RAI

RTQB

nario 2

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 1 2 3 4 5 6 7 8 9 10 11 12

M
ea

n
in

-s
ys

te
m

 ti
m

e

Δtmax (seconds)

RST
RAI

RTQB

nario 3

ing the execution of the attack with RST, RAI and RTQB.

2722 G. Maciá-Fernández et al. / Computer Networks 54 (2010) 2711–2727
parameters are shown in Table 1. Note that, for these re-
sults, the values for the parameters have been chosen
according to (i) the attack design rules, e.g., the number
of attack threads depends on the size of the service queue,
and (ii) the evaluation scenario considered (parameters
var[Ts] and number of server threads). Furthermore, for this
set of configuration values, the traffic rate of legitimate
users has been set up in such a way that the number of
legitimate requests arriving at the server is similar to the
number of attack requests. Finally, the round trip time
for all the legitimate users and attackers is the same in
these experiments. Although this is far from reality, we ex-
plore how different RTT values affect the efficiency of the
defense techniques in Section 5.3.
5.2. Techniques evaluation

The results obtained for these scenarios, when the con-
figuration parameters DtRST

max, DtRAI
max and DtRTQB

max are varied, are
shown in Fig. 7 (in the following figures we generically de-
note all these parameters as Dtmax). We discuss now these
results independently for every defense technique and la-
ter, in Section 7, the overall defense approach is discussed
in a comparison of all the results achieved.
5.2.1. Results for RST
The results obtained for RST in Scenario 1 – Fig. 7a –

show that E decreases from 100% to an asymptotic value
in DtRST

max around 60%, which is reached for values
DtRST

max > 2:4 s. This is the value at which the best perfor-
mance of RST is achieved, given by the condition in Expres-
sion (5), i.e., DtRST >

B
2þ RTT . The value of 60% is given by

the fact that, in this scenario, the number of legitimate re-
quests is slightly lower than the number of attack requests
(see Fig. 8).

In Scenario 2 – Fig. 7b, the evolution of E is similar. The
only difference resides in the fact that for low values of
Dtmax, E is lower than in Scenario 1, due to the existence
of variance in the server, var[Ts] = 0.2. In Scenario 3 –
Fig. 7c, – E also undergoes the same evolution. In this case,
the asymptotic value is lower due to a higher value in the
number of legitimate users’ requests (see Fig. 8).
 46

 48
 50

 52

 54

 56
 58

 60

 62

 64

 0 1 2 3 4 5

%
 U

se
rs

’ r
eq

ue
st

s

Δtmax (s

Fig. 8. Percentage of users’ requests during the execution of the
Regarding the results for the in-system time, Fig. 7
shows that the mean value increasese with DtRST

max. The
increment follows the equation given by Expression (8).
Note that, for Scenario 3, the existence of four threads in
the server considerably reduces the value of the in-system
time. However, even in this case there is an increment in
tI given by the application of RST.
5.2.2. Results for RAI
The results in Fig. 7 show that the efficiency of the at-

tack decreases as the parameter DtRAI
max increases and the

RAI defense is active. This is coherent with the behavior
of RAI, given that the application of the defense enables
an interval of DtRAI � B

2 seconds for legitimate users to intro-
duce requests in the queue, before the expected arrival of a
short attack burst.

Regarding the impact on the server behavior, it can be
seen that the in-system time also rises, according to Expres-
sion (9), although the increment is lower than in the RST
case.
5.2.3. Results for RTQB
The results for RTQB in Fig. 7 are shown for DtRTQB

max > RTT.
Here, the minimum value is obtained for DtRTQB

max ¼ RTT ,
whereas higher values in the parameter result in a slight
increment of the attack efficiency. The reason for this is
that this defense really enables an interval of time for legit-
imate users to seize positions in the queue delimited by
the expiration of DtRTQB and the arrival of the next short at-
tack burst. As DtRTQB

max becomes higher, this interval is short-
ened, thus decreasing the chances of legitimate users and,
consequently, rising the attack efficiency.

The observed in-system time decreases when RTQB is ap-
plied. This is due to the fact that, as the queue is blocked
during DtRTQB, the request in the service module is being
processed during this time. Obviously, DtRTQB is not com-
puted in the in-system time for the next request that arrives
at the queue.

In summary, it can be deduced from these results that a
practical RTQB implementation should be configured with
DtRTQB

max ¼ RTT. As previously indicated, note that RTT in
these experiments takes the same value for all the attack-
6 7 8 9 10 11 12
econds)

Scenario 1
Scenario 2
Scenario 3

attack with RST defense for the three scenarios defined.

G. Maciá-Fernández et al. / Computer Networks 54 (2010) 2711–2727 2723
ers. In Section 5.3 we discuss how to deal with a realistic
situation with heterogeneous RTT values.

5.2.4. Results for IRTQB
Let us recall that IRTQB is very similar to RTQB. How-

ever, it incorporates a mechanism for distinguishing legit-
imate users from attackers, based on two assumptions: (i)
attack requests have a temporal similarity, i.e., they arrive
in short bursts, and (ii) attack requests also present a spa-
tial similarity, i.e., every short attack burst is sent from a
limited number of different IP addresses (limitation in IP
spoofing).
 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3

At
ta

ck
 e

ffi
ci

en
cy

, E

Δtmax

(a) Sc

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3

At
ta

ck
 e

ffi
ci

en
cy

, E

Δtmax (

(b) Sc

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3

At
ta

ck
 e

ffi
ci

en
cy

, E

Δtmax (

(c) Sc

Fig. 9. Comparison of the attack efficiency for IRTQB and RTQB w
It is expected that the efficiency of IRTQB directly de-
pends on the accuracy of the detection algorithm. As indi-
cated in Section 4, we are not specifically interested in the
evaluation of specific algorithms for the detection of the at-
tacker, but only in assessing how to incorporate these algo-
rithms in a defense strategy, and how this affects the
server behavior. For this reason, in the evaluation of IRTQB
we implement the simple algorithm described in Section
4.4, i.e., a spatial similarity metric based only on the com-
parison of the source IP addresses of incoming requests.

We evaluate the attack efficiency with IRTQB for two
different cases: (i) the number of different legitimate users
 4 5 6 7 8
(seconds)

RTQB
IRTQB, 4 users

IRTQB, 100 users

enario 1

 4 5 6 7 8
seconds)

RTQB
IRTQB, 4 users

IRTQB, 100 users

enario 2

 4 5 6 7 8
seconds)

RTQB
IRTQB, 8 users

IRTQB, 100 users

enario 3

hen different number of legitimate users are considered.

 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

At
ta

ck
 e

ffi
ci

en
cy

, E

RTTconfigured-RTTreal (seconds)

RTQB
IRTQB

Fig. 10. Error resiliency analysis for the RTT estimation in both RTQB and IRTQB.

2724 G. Maciá-Fernández et al. / Computer Networks 54 (2010) 2711–2727
is similar to the number of IP addresses from which the at-
tack is being executed, and (ii) the number of different
legitimate users is higher than the number of attack loca-
tions. In the experiments, for the first case we choose 4
users – Scenarios 1, 2 – and 8 users – Scenario 3. In the sec-
ond case, we choose 100 users for all scenarios. In both
cases, the traffic rate for legitimate users is the same. Re-
sults for this experimentation are shown in Fig. 9.

As expected, IRTQB works better as the number of legit-
imate users is higher. Note that the algorithm discards spa-
tially similar requests in a time interval � B

2 ;DtIRTQB
max

� �
. If the

number of legitimate users is low for a given traffic rate,
the probability that at least two legitimate users’ requests
are similar is higher. For this reason, a better performance
is obtained for 100 users in Fig. 9.

When the DtIRTQB
max value is increased, the probability that

two similar legitimate users’ requests arrive at the server
during the interval is higher. If the number of legitimate
users is similar to the number of attack locations, the at-
tack efficiency rises, as legitimate users are treated in a
similar way to attackers. However, if the number of users
is higher than the number of attackers, this is not true
and, consequently, IRTQB is more effective (series ‘‘IRTQB,
100 users” in Fig. 9).

A configuration value for DtIRTQB
max which makes IRTQB

independent of the percentage of legitimate users is a good
choice. Here, we suggest the use of Dtmax = RTT. In this case,
IRTQB would not be degraded by the effect of a low per-
centage of legitimate users, and the performance is also
slightly better than for RTQB.
5.3. Parameter estimation

As suggested in Section 4, the server should properly
configure either RTQB or IRTQB with the configuration va-
lue Dtmax = RTT. Let us suppose a value is chosen for Dtmax

denoted as RTTconfigured. We are interested in evaluating
how a deviation between RTTconfigured and the real RTT value
for a given request, RTTreal, affect the effectiveness of the
attack. Fig. 10 shows the simulation results for the attack
efficiency, considering Scenario 2, for different values of
RTTconfigured � RTTreal. These results show that RTQB is less
resilient to negative deviations, while IRTQB remains stable
for deviations in both directions. The following conclusion
is drawn: it is better to configure Dtmax with a positive
deviation.

Let RTTi be the round trip time between the server and a
generic client i which is sending requests to it. As a previ-
ous step in the configuration, the server should estimate,
for every incoming request, the corresponding round trip
time RTTi, e.g., for TCP connections this could be done by
examining the timestamps for packets in the three way
handshake procedure. Then, the server maintains a list
containing the different RTTi values. As Dtmax should take
a value that will affect all the requests, the results from
Fig. 10 lead us to choose a configuration value for Dtmax as

Dtmax ¼ max½RTTi�: ð12Þ

Recall that RTQB and IRTQB are mechanisms based on con-
trolling the DoS periods in order to situate them around
the answer instants, thus penalizing the attacker. It could
happen that the defense technique itself causes even more
DoS than does the attacker. This might happen if Dtmax

takes a large value, e.g., due to the existence of large RTTi

values according to Expression (12). In this case, the
incoming traffic rate to the server becomes lower than
the output rate, thus reducing the occupation of the service
queue. Then, by monitoring this occupation, it could be de-
duced that this situation has been reached. At this mo-
ment, the considered maximum RTTi value is discarded
from the list of existent RTTi and Dtmax is configured again
as in Expression (12).
6. Real environment validation

In a previous work [11,10] in which the LoRDAS attack
is well described and evaluated, we contributed several
thorough experiments made with real environment imple-
mentations of LoRDAS attack. These were intended to illus-
trate two aspects: (i) A real implementation of the LoRDAS
attack is feasible, and (ii) the results obtained from the
used NS-2 simulation environment are coherent with
those obtained in real environment implementations.

Here, we are not as interested in demonstrating the
feasibility of a real implementation of the attack, as in

G. Maciá-Fernández et al. / Computer Networks 54 (2010) 2711–2727 2725
evaluating if the defense techniques proposed in this paper
are implementable and if they work as expected.

As shown in the results given in Section 5, both RTQB
and IRTQB are the techniques which yield the best results.
We argue that a valid RTQB implementation is enough to
demonstrate also the feasibility of the implementation of
IRTQB, as the latter only implies the additional inclusion
of an algorithm to discern the requests to be discarded dur-
ing the blocking time. Thus, we have chosen to make a real
RTQB implementation, which is described now.

RTQB has been implemented on a Linux kernel 2.6.18,
where the TCP/IP stack has been properly modified. We
have focused on attacks to applications that use TCP sock-
ets. In the Linux 2.6 kernel, the connections established by
peers to the server are queued up in a backlog queue, which
is associated with a listening socket defined by the applica-
tion. This queue is located in kernel space, and the applica-
tion is able to extract these connections from it by means
of the accept system call [25]. Thus, our implementation
consists of a kernel module that is able to block the en-
trance to the listening socket backlog queue during the
time intervals around the answer instants (shutdown of
TCP connections) specified by RTQB. The code within this
module is activated from the kernel through the insertion
of appropriately located kernel hooks [26].

We have also implemented a simple monoprocess ser-
ver, which sequentially serves requests in a configurable
fixed service time. This server emulates the behavior of a
 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

At
ta

ck
 e

ffi
ci

en
cy

, E

Δtmax (

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

M
ea

n
in

-s
ys

te
m

 ti
m

e

Δtmax (s

Fig. 11. Evolution of the attack efficiency and the mean in-system time with Dtmax

RTQB defense.
persistent HTTP timeout in an Apache server, at the same
time that its simplicity allows us to easily obtain measures.
Legitimate clients are also implemented as processes that
sends requests following a Poisson distribution. Finally,
we use our implementation of the attack presented in [10].

We have evaluated both the attack efficiency, E, and the
in-system time, tI, obtained in this test bed for different val-
ues of the RTQB configuration parameter Dtmax. The values
selected for the rest of the attack and the server configura-
tion parameters are those already chosen for the evalua-
tion in the Scenario 2 of the simulated environment
(Table 1). Furthermore, the estimated mean RTT approxi-
mates 1 ms in our test bed.

The results obtained are shown in Fig. 11. Here, the at-
tack efficiency and the in-system time are represented
when RTQB is not activated (Dtmax = 0) and for a set of dif-
ferent Dtmax values. We first note that the activation of
RTQB make the attack efficiency decrease more than 37%.
We can also see that the evolution of the attack efficiency
is similar to that obtained from simulations (Fig. 7b). The
oscillations obtained in the efficiency (around 41%) are
really small, and they are due to changes in the network
and server variability from one experiment to other. Also
the values for the in-system time correspond with those
obtained with the simulation environment (Fig. 7b).

These real environment experiments have allowed us to
validate the results previously obtained from the simu-
lated environment, as both present the same behavior.
 6 7 8 9 10 11 12

seconds)

Without defense
With defense

6 7 8 9 10 11 12
econds)

Without defense
With defense

, obtained during the execution of the attack to a real server with/without

2726 G. Maciá-Fernández et al. / Computer Networks 54 (2010) 2711–2727
Moreover, we now dare to say that no important difficul-
ties are expected in the implementation of the suggested
defenses.
7. Discussion of the results

After the description and experimental evaluation of
different defense techniques, we now aim at discussing
these results and considering relevant aspects when adopt-
ing a final solution for the defense against LoRDAS attacks.

The results in Fig. 7 demonstrate that RST,although a
simple strategy, is not the best solution in every case,
either comparing the attack efficiency or the in-system time
(impact on the server behavior). When low values for Dtmax

are considered, RTQB and IRTQB are the techniques that
produce the best results. However, for high Dtmax values,
RAI could even work better than the former ones. The main
problem with RAI is the impact generated in the server
behavior, which increases linearly with Dtmax. For this rea-
son, we could initially discard a solution based on RAI.

A decision between the remaining solutions, i.e., RTQB
and IRTQB, is not straightforward and may depend on the
system to be secured against LoRDAS attacks. The follow-
ing aspects should be considered:

� Ease of implementation: the implementation should be
as easy as possible, in order not to overload the network
stack with additional tasks that slow down the process.
RTQB implementation is simple, as it only needs to keep
track of RTT values for incoming requests. On the con-
trary, the implementation of IRTQB involves not only
additional memory resources for saving the timestamps
and the source of the incoming requests, but also addi-
tional processing for every incoming request in order to
calculate the similarity with any other previous peti-
tion. Thus, considering this aspect, RTQB is a better
solution.
� Effectiveness of the technique: as shown in Fig. 9, for the

suggested configuration values in both RTQB and IRTQB,
i.e., Dtmax = RTT, IRTQB works slightly better than RTQB,
especially when the percentage of legitimate users is
high. With this criterion, IRTQB is a better solution for
the defense.
� Error resiliency: deviations in the estimation of parame-

ters like RTT may appear. As shown in Fig. 10, IRTQB is
more resilient than RTQB to deviations due to the fact
that the attack efficiency obtained maintains a stable
value when deviations occur. Again, IRTQB is preferable
under this criterion.

In summary, we recommend IRTQB provided that en-
ough processing resources are available in the server. How-
ever, note that IRTQB depends on the detection algorithm
used. A good choice for this algorithm may enhance the
advantages of IRTQB at the expense of resource consump-
tion in the server.

A final consideration should be made. Note that, during
the description and evaluation of the different techniques,
an overflow state in the server has been assumed, i.e., the
service queue is considered to be full of requests. A final
question ought to be answered here: when should the de-
fense technique be activated? In this respect, we suggest
activating the defense strategies not only in the overflow
state, but probabilistically for every answer in the server,
with a probability that depends on the service queue occu-
pation. We plan to explore different strategies in this line
as a future work.
8. Conclusions and future work

In this paper we have explored different mechanisms
for defending an application server against LoRDAS attacks.
The approaches considered are based on modifying the
way in which the server operates with the queues in which
incoming requests are stored. Instead of presenting a final
solution, we have described different alternatives, discuss-
ing the pros and cons of each.

Both the attack and the server with the suggested de-
fenses techniques have been implemented in a simulated
environment. An experimental framework designed to
evaluate the effects of the defenses has been contributed
and conclusions have been extracted from these experi-
ments. Furthermore, the feasibility of an implementation
of the suggested defense strategies has been evaluated.

From the alternatives evaluated, the best techniques are
based on blocking the entry of requests in the service
queue of the server once an answer is sent (RTQB) or dis-
carding those requests which are selected by a suggested
detection algorithm (IRTQB). These are able to reduce the
efficiency of the attack by up to half, while no impact on
the amount of time spent by the requests in the system
is generated. The choice of the most suitable technique de-
pends on the processing resources of the server to be pro-
tected, as the alternative IRTQB is more expensive in this
sense but also more efficient.

As future work, we plan to follow three lines of re-
search. First, we plan to work on the development of detec-
tion algorithms to differentiate attack requests from
legitimate users’ requests. The main ideas underlying this
kind of algorithms have been discussed here, but only a
simple algorithm has been tested. Far from considering
only the source IP addresses, we plan to incorporate a more
complex set of features to define the spatial similarity be-
tween requests. Second, in this paper we have explored the
application of the suggested techniques when the server is
in an overflow state. We will now work on testing how to
progressively apply these defense techniques as the server
becomes congested, and not only upon overflow condi-
tions. Third, we plan to evaluate the performance of these
techniques in a production environment in order to assess
the amount of resources needed for their execution.
Acknowledgments

This work was partially supported by the Spanish Na-
tional Research Programme of the MEC, under project
TEC2008-06663-C03-02 (70% FEDER funds).

We also specially thank Pedro Garcı́a Teodoro for his
helpful comments.

G. Maciá-Fernández et al. / Computer Networks 54 (2010) 2711–2727 2727
References

[1] J. Mirkovic, P. Reiher, A taxonomy of DDoS attack and DDoS defense
mechanisms, SIGCOMM Comput. Commun. Rev. 34 (2) (2004) 39–
53.

[2] J. Mirkovic, S. Dietrich, D. Dittrich, P. Reiher, Internet Denial of
Service. Attack and Defense Mechanisms, Prentice Hall, 2004, ISBN:
0-13-147573-8.

[3] A. Shevtekar, J. Stille, N. Ansari, On the impacts of low rate DoS
attacks on VoIP traffic, Security and Communication Networks 1 (1)
(2008) 45–56. doi: http://dx.doi.org/10.1002/sec.7.

[4] A. Kuzmanovic, E. Knightly, Low-rate TCP-targeted denial of service
attacks (the shrew vs. the mice and elephants), in: Proceedings of the
ACM SIGCOMM’03, 2003, pp. 75–86.

[5] M. Guirguis, A. Bestavros, I. Matta, Exploiting the transients of
adaptation for RoQ attacks on internet resources, in: ICNP ’04:
Proceedings of the 12th IEEE International Conference on Network
Protocols, IEEE Computer Society, Washington, DC, USA, 2004, pp.
184–195.

[6] M. Guirguis, A. Bestavros, I. Matta, Y. Zhang, Reduction of quality
(RoQ) attacks on internet end-systems, in: INFOCOM 2005, 24th IEEE
International Conference on Computer Communications, 2005, pp.
1362–1372.

[7] M. Guirguis, A. Bestavros, I. Matta, Y. Zhang, Reduction of quality
(RoQ) attacks on dynamic load balancers: vulnerability assessment
and design tradeoffs, in: INFOCOM 2007, 26th IEEE International
Conference on Computer Communications, 2007, pp. 857–865.

[8] W. Ren, D. Yeung, H. Jin, M. Yang, Pulsing RoQ DDoS attack and
defense scheme in mobile ad hoc networks, Int. J. Network Security 4
(2) (2007) 227–234.

[9] M. Guirguis, A. Bestavros, I. Matta, Y. Zhang, Adversarial exploits of
end-systems adaptation dynamics, J. Parallel Distrib. Comput. 67 (3)
(2007) 318–335. doi: http://dx.doi.org/10.1016/j.jpdc.2006.10.005.

[10] G. Maciá-Fernández, J.E. Díaz-Verdejo, P. García-Teodoro, Evaluation
of a low-rate DoS attack against application servers, Comput.
Security 27 (7) (2009) 335–354.

[11] G. Maciá-Fernández, J.E. Díaz-Verdejo, P. García-Teodoro, Evaluation
of a low-rate dos attack against iterative servers, Comput. Networks
51 (4) (2007) 1013–1030. doi: http://dx.doi.org/10.1016/
j.comnet.2006.07.002.

[12] H. Sun, J. Lui, D. Yau, Defending against low-rate TCP attacks:
dynamic detection and protection, in: Proceedings of the 12th IEEE
International Conference on Network Protocols (ICNP04), 2004, pp.
196–205.

[13] E. Keogh, Exact indexing of dynamic time warping, in: Proceedings
of the 28th VLDB Conference, China, 2002.

[14] H. Sun, J.C.S. Lui, D.K.Y. Yau, Distributed mechanism in detecting and
defending against the low-rate TCP attack, Comput. Netw. 50 (13)
(2006) 2312–2330. doi: http://dx.doi.org/10.1016/j.comnet.2005.
09.016.

[15] W. Wei, Y. Dong, D. Lu, G. Jin, H. Lao, A novel mechanism to defend
against low-rate denial-of-service attacks, Lecture Notes Comput.
Sci. 3975 (2006) 261–271.

[16] A. Shevtekar, K. Anantharam, N. Ansari, Low rate TCP denial-of-
service attack detection at edge routers, IEEE Commun. Lett. 9 (2005)
363–365.

[17] G. Yang, M. Gerla, M.Y. Sanadidi, Defense against low-rate TCP-
targeted denial-of-service attacks, in: Proceedings of the IEEE
Symposium on Computers and Communications (ISCC’04),
Alexandria, Egypt, 2004, pp. 345–350.

[18] S. Sarat A., B.C. Pierce, D.N. Turner, On the effect of router buffer sizes
on low-rate denial of service attacks, in: International Conference on
Computer Communications and Networks, 2005 (ICCCN’05), 2005,
pp. 281–286.

[19] Y. Chen, K. Hwang, Spectral analysis of TCP flows for defense against
reduction-of-quality attacks, in: Proceedings of the IEEE
International Conference on Communications (ICC’07), 2007, pp.
1203–1210.

[20] A. Shevtekar, N. Ansari, A router-based technique to mitigate
reduction of quality (RoQ) attacks, Comput. Networks 52 (5)
(2008) 957–970. doi: http://dx.doi.org/10.1016/j.comnet.2007.
11.015.

[21] K. Argyraki, D.R. Cheriton, Scalable network-layer defense against
internet bandwidth-flooding attacks, IEEE/ACM Trans. Networks 17
(4) (2009) 1284–1297. doi: http://dx.doi.org/10.1109/
TNET.2008.2007431.

[22] M. Srivatsa, A. Iyengar, J. Yin, L. Liu, Mitigating application-level
denial of service attacks on web servers: a client-transparent
approach, ACM Trans. Web 2 (3) (2008) 1–49. doi: http://
doi.acm.org/10.1145/1377488.1377489.

[23] S. Ranjan, R. Swaminathan, M. Uysal, A. Nucci, E. Knightly, DDoS-
shield: DDoS-resilient scheduling to counter application layer
attacks, IEEE/ACM Trans. Networks 17 (1) (2009) 26–39. doi:
http://dx.doi.org/10.1109/TNET.2008.926503.

[24] K. Fall, K. Varadhan, The NS manual, <http://www.isi.edu/nsnam/ns/>,
2009. URL <http://www.isi.edu/nsnam/ns/>.

[25] W.R. Stevens, B. Fenner, A.M. Rudoff, Unix Network Programming,
the Sockets Networking API, vol. 1, third ed., Addison-Wesley
Professional, 2003, ISBN: 0-13-141155-1.

[26] C. Wright, C. Cowan, S. Smalley, J. Morris, G. Kroah-Hartman, Linux
security modules: general security support for the linux kernel, in:
Proceedings of the 11th USENIX Security Symposium, August, 2002,
pp. 17–31.

Gabriel Maciá-Fernández is Assistant Pro-
fessor in the Department of Signal Theory,
Telematics and Communications of the Uni-
versity of Granada (Spain). He received a MS
in Telecommunications Engineering from the
University of Seville, Spain, and the Ph.D. in
Telecommunications Engineering from the
university of Granada. In the period 1999–
2005 he worked as a specialist consultant at
‘Vodafone España’. His research interests are
focused on computer and network security,
with special focus on intrusion detection,

reliable protocol design, network information leakage and denial of
service.
Rafael A. Rodríguez-Gómez is a Ph.D. student
in the Department of Signal Theory, Telemat-
ics and Communications of the University of
Granada. He received his MSc degree in Tele-
communications from the University of Gra-
nada (Spain) in 2008. His research interests
include defense against DoS attacks, security
in P2P networks and stochastic modeling
applied in the security field.
Jesús E. Díaz-Verdejo is Associate Professor in
the Department of Signal Theory, Telematics
and Communications of the University of
Granada (Spain). He received his B.Sc. in
Physics (Electronics speciality) from the Uni-
versity of Granada in 1989 and held a Ph.D.
Grant from Spanish Government. Since 1990
he is a lecturer at this University. In 1995 he
obtained a Ph.D. degree in Physics. His initial
research interest was related with speech
technologies, especially automatic speech
recognition. He is currently working in com-

puter networks, mainly in computer and network security, although he
has developed some work in telematics applications and e-learning
systems.

http://dx.doi.org/10.1002/sec.7
http://dx.doi.org/10.1016/j.jpdc.2006.10.005
http://dx.doi.org/10.1016/j.comnet.2006.07.002
http://dx.doi.org/10.1016/j.comnet.2006.07.002
http://dx.doi.org/10.1016/j.comnet.2005.09.016
http://dx.doi.org/10.1016/j.comnet.2005.09.016
http://dx.doi.org/10.1016/j.comnet.2007.11.015
http://dx.doi.org/10.1016/j.comnet.2007.11.015
http://dx.doi.org/10.1109/TNET.2008.2007431
http://dx.doi.org/10.1109/TNET.2008.2007431
http://doi.acm.org/10.1145/1377488.1377489
http://doi.acm.org/10.1145/1377488.1377489
http://dx.doi.org/10.1109/TNET.2008.926503
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/

	Defense techniques for low-rate DoS attacks against application servers
	Introduction
	Related work
	Defenses against Shrew attacks
	Defenses against RoQ attacks
	Defenses against DoS directed against applications

	LoRDAS attack fundamentals
	Proposals on defenses against the LoRDAS attack
	Random service time (RST)
	Random answer instant (RAI)
	Random time queue blocking (RTQB)
	Improved Random Time Queue Blocking (IRTQB)

	Experimental evaluation of techniques
	Experimental framework description
	Techniques evaluation
	Results for RST
	Results for RAI
	Results for RTQB
	Results for IRTQB

	Parameter estimation

	Real environment validation
	Discussion of the results
	Conclusions and future work
	Acknowledgments
	References

