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Abstract. In this work1, we present a vulnerability in monoprocess
or monothreaded servers that allows the execution of DoS attacks with
the peculiarity that they are generated by low rate traffic. This feature
makes the attack less vulnerable to detection by current IDS systems,
which usually expect high rate traffic. The intruder can take advantage
of some knowledge about the inter-output times in the server to build the
attack. We have simulated and tested it in a real environment, obtaining
worrying conclusions due to the efficiency achieved by the attack, with
low effort from the attacker.

1 Introduction

Denial of Service (DoS) attacks are a very serious problem in Internet, with a
great impact in the service offered by small as well as by big and important
companies like Ebay, Amazon or Buy.com [1]. Besides, this kind of attacks could
be carried out in a wide variety of manners, as it has been pointed out in the
computer network literature [2]. This kind of attacks tries to exhaust some re-
sources in a single machine or in a network with the aim of either reducing or
subverting the service provided by them. Considering the three main aspects
of security, that is, confidentiality, integrity and availability, DoS attacks focus
their target in the reduction of the last one. The intruders usually achieve their
goal by sending to a victim, either in a single or in a distributed way (DDoS)
[2], a stream of packets that exhaust its network bandwidth or connectivity, or
somehow exploiting any discovered vulnerability, causing all the cases a denial in
the access to the regular clients. In recent years, there have been some large-scale
attacks that affected important Internet sites [3] [4] [5], what demonstrate the
vulnerability of the network environments and services to this kind of attacks.

Close to the evolution of the DoS attacks, many proposals have also appeared
for preventing and detecting them. Many of the preventive measures are applica-
ble to mitigate DoS attacks, like egress or ingress filtering [6] [7], disabling of
unused services [8], change of IP address, disabling of IP broadcasts, load balanc-
ing, or honeypots [9]. However, although prevention approaches offer increased
security, they can never completely remove the threat so that the systems are
always vulnerable to new attacks.
1 This work has been partially supported by the Spanish Government through MYCT
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That is why it is necessary the adoption of intrusion detection systems (IDS)
capable for detection of attacks [10]. Many efforts have been made to solve the
problem of discovering DoS attacks in a high-bandwidth aggregated traffic, as
it is stated in the works of Talpade et al. [11], Cabrera et al. [12] or Mirkovic et
al. [13]. Besides the signature detection IDS’s, the major part of the proposed
IDS’s for DoS detection relies on the identification of the attack by using tech-
niques that are based on the hypothesis that it is going to be carried out through
a high rate flooding from the intruder.

In this paper we analyze an exploit in monoprocess or monothreaded servers.
We postulate the use of these kind of servers in simple device services in pervasive
computing, so this exploit allows an intruder to carry out a kind of DoS attack,
classified as an application level attack according to [14], that presents the special
feature of using a low rate traffic against the server. Due to this fact, the attack
will be capable of bypassing the detection mechanisms that usually rely on a
high-bandwidth traffic analysis. Kuzmanovic et al. already presented in [15] an
attack with similar rate characteristics and, afterwards, some solutions appeared
to tackle this problem [16], [17], [18]. Although the attack presented in this work
is similar to the previous ones in some aspects, there are important differences
with them. Both type of attacks take advantage of a vulnerability caused by
the knowledge of a specific time value in the functioning of the protocol or
application, thus allowing an ON/OFF waveform attack that results in low rate
traffic but with high efficiency in denying the target service. However, the attack
presented in [15] is TCP-targeted, while the one introduced here threatens the
application level. While the other attack generates outages in a link, this one
only overflows a service running in a server, so that it could be unnoticeable in
a link overflow monitoring. Moreover, in our case, the waveform of the attack
is changeable along the time and the burst period does not involve a very high
rate, so that the previously presented detection techniques require to be adapted.
There are also differences in the vulnerabilities exploited in both kind of attacks.
In the TCP-targeted (low rate) case, the knowledge of the RTO timer for the
congestion control implemented in TCP is exploited, whilst in the monothreaded
server case the inter-output times are the key to build the attack, as it will be
presented in Section 3. But the main difference between the two attacks lies in
the fact that during the TCP-targeted attack, the link is just busy in the outages
periods, while in the ours one the server is always busy and processing requests
from the intruder, causing the legal users the sensation that the server is not
reachable. This last feature is similar to the behavior of the Naptha attack [19],
although the main difference is that Naptha is a brute-force attack executed with
high rate traffic.

This article is structured as follows. In Section 2 the scenario of the attack and
the model of the system that is going to be attacked are defined. Next, in Section 3
it is specified how the attack is going to be performed. Section 4 will evaluate
the effectiveness and behavior of the attack by means of simulations. Following,
Section 5 will validate the results in a real environment, showing the goodness of
the simulated results. Finally, some conclusions are presented in Section 6.
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2 Modelling and Scenario Definition

We shall analyze an exploit in monoprocess or monothreaded servers that would
potentially allows an intruder to carry out denial of service attacks at the appli-
cation level characterized by low arrival rates at the server. The scenario to be
considered is a generic client-server scenario where the server is going to receive
aggregated traffic from legal users and intruders. Without lost of generality, the
intruder could make the decision of carrying out the attack in a distributed man-
ner or not, depending on the preventive measures [14] implemented in the target
system and the own capabilities of the attacker.

2.1 Server Modelling

The first step in this work is to define a model that captures the behavior of
a monoprocess or monothreaded server. The server will be simply a black box
that receives packets, processes them and gives responses. This way, the overall
system receives input messages requesting some specific service offered by a
server. The system reacts to these requests by sending the message carrying the
desired data (OK message in advance), or simply rising an event or sending a
message indicating an overflow in the internal buffers or queues (MO event in
advance). It is important to point out that, in real environments and depending
on features of the considered server, this last event could be observable either
through a specific protocol message, or logs, process signals, or even to be not
observable at all.

The model consists of two elements: a) a service queue and b) a service
module. These elements interact as shown in Fig. 1, where the arrows show the
processing path followed by the incoming packets. The first building block is
the service queue, where the incoming requests are temporarily stored. It could
represent a TCP connections buffer, UDP buffer or simply internal application
buffers. The processing of the client requests is made by the service module,
which represents a service carried out by a single processing thread running
on an operating system. That is, this module serves only one request from the
service queue each time (iterative server).

Service

module

ServiceTime (T )S

MO

OK
Service queue

(capacity = N)

Input

request

System Capacity: N

Fig. 1. Model for monoprocess/monothreaded server
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The system operates as follows. An input request enters the system. If the
service queue has free positions, the request is queued on it. Otherwise, an MO
event occurs. The request will stay in the service queue during tq seconds waiting
for its turn to be served. This time is the so called queue time in queuing theory.
Then, it will be processed by the service module during ts seconds. This time
is called service time and it corresponds to a parsing of the data, or simply the
time elapsed in a complex calculation. Finally, when the processing is completed,
the corresponding response to the input request is generated (OK message).

We can consider that tq and ts are samples from respective random processes
represented by random variables. As a notation, in the following we will use
lower-case letters for instantaneous values of a random variable, and their corre-
spondent capital letters represent the general process. Moreover, operators E[·]
and V ar[·] will be, respectively, the mean value and the variance of the specified
random variable. The variable Ts will be modelled as a normal distribution (N ).

The arrival of the user requests is also considered a random process. As rec-
ommended in many teletraffic studies [20], the arrivals are modelled by a Poisson
process. Therefore, the distribution of user inter-arrival times, Ta, corresponds
to an exponential probability:

P (Ta = t) = λ · e−λt (1)

where λ represents the arrival rate of requests from the users. Moreover, it is
demonstrated [21] that the aggregation of traffic from users whose inter-arrival
times are exponentially distributed, with rates λi, results in a traffic with inter-
arrival time that also follows an exponential distribution with inter-arrival time:

λ =
n∑

i=1

λi (2)

This expression implies that it is possible to suppose only one user in the
scenario of study to represent all the aggregated traffics (Poisson processes)
coming from n users.

2.2 Inter-output Time

The potential exploit that allows an intruder to carry out an attack is the knowl-
edge of the inter-output time of the server. This parameter, named τ , is defined
as the time elapsed between two consecutive outputs or answers given by the
server. As stated in Section 2.1, an OK message is here termed an output or an-
swer. On the contrary, MO messages are not going to be considered as outputs.

For simplicity, we examine a case of study in which fixed times are considered
instead of random processes. Thus, the service time will be represented by the
mean value of its random variable. Although this could seem a very restrictive
case, it will be shown in the next section that the results are still valid for more
complex cases in which the service time is not fixed.

With the above restrictions and assuming that the service queue is always
full of service requests, Fig. 2 shows an example of the inter-output time diagram
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Fig. 2. Inter-output time diagram and processing state for several requests

and processing state for several requests. For a server with a service queue of 4
positions, the service time is drawn in dark grey colour. Outputs are signaled by
vertical arrows. A simple observation of the scheme leads us to the conclusion
that, upon the condition of fixed service time, it is obtained a fixed inter-output
time τ that corresponds with:

τ = E[Ts] (3)

In the case that the service queue is not always full of service requests, the
inter-output time could experience some variations, specifically when there are no
requests to be served. However, the attacker can easily maintain an appropriate
level of requests in the queue in order to get a fixed inter-output time.

The low rate DoS attack to monoprocess servers relies on the knowledge of
this time. Nevertheless, it is necessary to indicate that this time could be still
estimated by the intruder in real conditions where there are variable service times
and propagation delays. In the case that variable service times and propagation
delays appear, it is important to differentiate between the inter-output time
from the server and that one observed by the users (legal or not). In effect, an
observer of the inter-output time located at the server will appreciate a normal
distribution behaviour with a mean E[Ts] and a variance V ar[Ts]:

τserver = N
(
E[Ts], V ar[Ts]

)
(4)

However, any client of the service will appreciate a difference in the inter-
output time, due to the influence of the variance in the round trip time (RTT ).
This way, assuming independency between the variables Ts and RTT , the ob-
servation of the inter-output time will be, in this case:

τuser = N
(
E[Ts], V ar[Ts] + V ar[RTT ]

)
(5)

In what follows, we will try to validate this behaviour by means of simulation.

2.3 Inter-output Time Validation

We have used Network Simulator (NS2) [22] to check whether the assumption
that inter-output time approximates to Eq. (5) is correct under non empty queue
conditions. For this purpose, a new class derived from the application class that
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behaves like a server (server class) has been implemented, which makes traces
and logs to track all the events and statistics necessary for our study.

We have used two set of experiments to validate the expected results about
the inter-output time of the model. The first set of experiments tries to validate
the behaviour explained in Section 2.2, when fixed values for Ts are used. Accord-
ing to the results obtained in this case, it can be concluded that the behaviour
of the simulated system is as expected.

In the second set of simulations, we have considered the case when the service
time Ts and the round trip time RTT are modelled with normal distributions.
The obtained results are very promising, showing low variations, in a statistical
sense, among the predicted and the simulated behaviour.

Fig. 3 shows some partial results derived from the second set of experiments.
In this case, the service queue has been offered user traffic with E[Ta] = 1.0 s.
Other values used in this simulation are the capacity of the queues N = 40, and
Ts = N (1.5 s, 0.02). The round trip time takes the value RTT = N (0.6 s, 0.02).
It should be notice that E[Ta] has been adjusted to maintain the service queue
completely full, due to the fact that the user traffic rate is higher than the service
rate in the server. The simulation for a period of 1000 s provides 694 outputs.
The mean value obtained for inter-output time is 1.520 s, with variance 0.041,
which accurately approximates the values given by Eq. (5). It is noticeable that
the obtained histogram for the inter-output times approximates to the normal
probability function (see Fig. 3(b)).

Fig. 4 shows other results belonging also to the second set of experiments,
where there is no congestion in the service queue. In this simulation case we have
adjusted the same parameters than in the previous one, but changing the user
inter-arrival mean time E[Ta] to 1.5 s. The same value for E[Ts] have been chosen
in order to maintain requests in the service queue. The simulation for a period
of 1400 seconds has provided 923 outputs. The mean value obtained is 1.536 s
and the variance 0.114. The deviation is greater than in congestion conditions
due to the values generated when the buffer has no requests. Fig. 4 represents
the inter-output times in the main axis and the occupation of the buffer in the
secondary axis (dashed lines). We can see that the periods with void service
queue occupation results in sporadic higher values for the inter-output times, as
stated in Section 2.2.

Fig. 3. Simulation of inter-output time with flooded buffer: (a) Inter-output time values
and (b) histogram of the samples
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Fig. 4. Simulation of inter-output time with no flooded buffer: (a) Inter-output time
values and buffer occupation level and (b) histogram of the samples

The results of this set of experiments show that the assumptions made for
the operation under congestion in the service queue are good enough. It is also
interesting to check that, under no complete saturation conditions, the results
are still valid although they present less accuracy.

These experiments show that, even in simulated scenarios where service time
is variable, the inter-output time could be still predictable for a possible intruder
to build an attack based on this knowledge.

3 Low Rate Attack Specification

With the aim of demonstrating that monoprocess applications could suffer a low
rate denial of service attack, we are going to specify how the attack would be
accomplished.

In order to successfully attack the server, first of all, it is necessary to deter-
mine the weak point to be exploited. The resource to be exhausted is the service
queue, in which the requests are queued by the application. Therefore, the ob-
jective is to maintain it full (or at least so much full as possible) of requests
from the intruder. This way, legal users are not going to be able to queue their
requests, thus perceiving a denial of the service provided by the application.

This strategy is commonly used in DoS attacks. However, the particular
characteristic of the introduced attack here is that the intruder is not going to
flood the buffer with a high rate of requests (brute-force attack), but a low rate
traffic. The way to achieve this goal is by making a prediction of the instants at
which the server responds to the requests, that is, when an output is going to be
generated. The intruder will flood the service queue only during a short period
of time around the predicted output time, resulting in an overall low rate flood
experienced by the target server.

The low rate attack will have two phases: a transitory phase, detailed in Sec-
tion 3.2, which will pursuit to initially flood the service queue, and a permanent
phase, explained in Section 3.1, through which we try to maintain it full (or at
least so much full as possible) of requests by sending request packets at a low
rate.
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3.1 Permanent Phase Execution

The aim of the permanent phase of the attack is to maximize the time during
which the service queue is full of requests. This implies that every released posi-
tion in the queue has to be seized by an intruder request in the minimum time.
When the system is full of requests, a free position is issued when the server pro-
vides an output or answer. It is therefore necessary to concentrate the intruder
efforts in the moment in which the server raises it, in order to seize the new
free position in the service queue. Therefore, the attacker should, ideally, send
the requests in such a way that they arrives at the server synchronized with the
outputs.

We concluded in Section 2.2 that the perceived time between two consecutive
outputs is a random process represented by τuser . However, the statistical nature
of the process will introduce some variability in the instantaneous values of τuser ,
which should be considered in the attack strategy. It is also important to note
that the inter-output time is independent of the queue time, and only the service
and round trip times determine it. Besides, at the time we are trying to seize
positions in the service queue, there will be other users that are attempting to
succeed on this same purpose. So, in order to raise the probability of filling the
free position with low rate traffic when an output happens, the intruder should
synchronize the sending of the requests with the output in the server. To do
this, the intruder use a ON/OFF scheme to flood the server with the ON phase
situated in the moment of the output.

The proposed attack strategy consists in consecutive periods composed by a
period of activity, ontime, followed by a period of inactivity, offtime. The attack
is specified by the following parameters, as depicted in Fig. 5:

– Estimated mean inter-output time (E[τuser ]): it is an estimation of τuser

made by the intruder. This can be easily obtained by sending close requests
and evaluating the time between the corresponding responses. Of course, the
answers should be consecutive in the server. After some proofs, the intruder
will succeed on this aim.

– Offtime: time during which there is no transmission of attack packets.
– Ontime: time during which an attempt to flood the service queue is made

by emitting request packets.

offtime ontime

offset

E[ ]�
user

Attack

packets

interval

Fig. 5. Attack parameters
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– Interval: period of time elapsed between the sending of two consecutive
packets during ontime.

– Offset: represents the deviation between the center of ontime and E[τuser ].
The value 0 for the offset indicates that ontime is completely centered in
E[τuser ].

Both offtime and ontime must be adjusted in such a way that a synchro-
nization between the output and the reception of the requests from the intruder
is achieved. Thus, ontime should be centered around the estimated mean inter-
output time and its duration should be proportional to twice its variance to
account for its variability. The offset is considered to shift the whole ontime
period in order to take into account second order aspects, as those related with
discrete timing in the attack packets during ontime.

Although the main strategy of the permanent phase has been outlined, there
are some important details to be considered. First, the effect of the statistical
variability of Ts and RTT should be taking into account. In order to avoid the
cumulative sum of variations through several periods, the intruder will reestimate
on each period the expected timing for the next output. So, the attack period
(offtime / ontime) will be restarted each time a response is received from the
server. Obviously, the reception of an output during the ontime period implies
to stop the current period start a new one. Besides, it is important to take
into account the effect of the round trip time between the intruder and the
victim. To consider this, the initially calculated offtime value should be reduced
to offtime−E[RTT ].

Fig. 6 shows a diagram of the execution of the permanent phase that can be
used to review the different steps of the attack. First, the ontime period starts
by sending packet P1. Packet P2 is sent before the output O1 arrives from the

RTT/2

Output

offtime

offtime - E[RTT]

seizure

P1 P4P
2

P3

O
1

SERVER

INTRUDER

time

Fig. 6. Permanent phase
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server. After that, the packet P2 seizes the new free position appeared after
the response (O1). However, the intruder continues the ontime period till the
reception of the response (packet O1). Meanwhile, the intruder sends the packet
P3, which will cause an overflow event in the server upon its reception. On the
sending of this last packet during the ontime period, the intruder will schedule
a timer with value offtime and the new period begins. But, on the reception of
the answer to packet P1 (packet O1), the period stops and a new one is started.

This mechanism is suitable to achieve our goal. Nevertheless, there is another
case to consider. What happens if the output is raised after the reception of
the whole ontime period in the server? In this case, the free position would
be available till the next ontime to be seized by a user. This implies a high
probability of failure in the aim of seizing the free position. To avoid this effect, on
the reception of an answer from the server, the intruder will send another attack
packet (packet P4 in Fig. 6) and reschedule the period with offtime−E[RTT ].
Obviously, when the intruder does not receive the response (e.g., the output in
the considered period corresponds to a request made by a legal user instead of
the intruder) and the output is raised after ontime, it is more probable to fail
the seizure. Thus, we can conclude that seizure failures, after a delay due to the
queue time, increase the probability of new failures.

3.2 Transitory Phase Execution

The aim of the transitory phase is to initially flood the service queue. This
phase could be made by high rate flooding, although this would make the attack
more detectable. However, if the rate of the flooding is slightly higher than the
service rate in the server, the queue will end up flooded after some periods.
That is, initially the attacker will acquire some positions in the service queue. If
the methods associated to the permanent phase are applied, those positions will
remain captured, while the excess of traffic would eventually add seized positions
from the intruder. This way, the attacker will finally get the whole queue full of
his/her requests.

Usually, the intruder will detect the complete flooding of the service queue
by means of the observation of the rejection of his/her packets. For example, in
a connection oriented application the reception of RESET messages answering
the SYN requests (in the case of TCP connections) will identify the complete
flooding.

4 Attack Evaluation

In order to check the efficiency of the attack, and to validate the current work,
it is convenient to establish some indicators to measure its performance:

– The percentage of seizures (S) as the number, in percentage, of buffer posi-
tions seized by the attack divided by the total number of seizures experienced
in the server, within a specific period of time. This is a measure of the efficacy
of the attack.
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– The effort of the attack (E) as the number, in percentage, of MO packets
received by the intruder, divided by the total number of packets generated
by the intruder. This value represents the effort made by the attacker.

– The user success percentage (U) as the ratio, in percentage, between the
number of seizures made by a legal user and the total number of packets
generated by him/her. U is a measure of the perception on the service level
experienced by a given legal user.

– The overflow percentage (O) as the ratio, in percentage, of the total MO
messages divided by the number of packets generated by the server. This
parameter tells about the saturation experienced by the server.

Among all the indicators, only the effort of the attack is observable by the
intruder during the attack. This is because only the server knows the total num-
ber of packets and seizures generated during the observation period, which are
necessary figures to calculate S and O. On the other side, U will be observable
only by the legal users that try to access to the server by usual methods.

The aim of the attack is to minimize U , that is, the user perception of the
availability of the server. This is similar to maximize S, the more the server is
engaged more time with intruder requests, the more the user success percentage
decreases. Besides, in order not to be detected by any active intrusion detection
system, the attack should also minimize its effort, E. On the other hand, min-
imizing E will contribute to a lower overflow O in the server, making thus the
attack more undetectable.

In order to evaluate the performance and effectiveness of the attack, we have
implemented within Network Simulator (NS2) [22], a new object derived from the
application class that behaves like the intruder (intruder class) and implements
the two phases specified in Section 3.

We are interested in discovering how much effective the low rate DoS attack
could be. A set of attacks has been tested in the simulator, and worrying results
have been obtained because of the effectiveness constated. Fig. 7 shows the
results obtained from an example of one attack simulation composed by 1332
outputs. The attack has been launched against a server with Ts = N (3.0 s, 0.2)
and E[Ta] = 4.0 s. The parameters of the attack have been tuned choosing
values for ontime = 0.6 s, offtime = 2.7 s, offset = 0 s, and interval = 0.3 s.

Fig. 7. Effectiveness for one attack
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Fig. 8. User success and effective effort for 25 different configurations of the low-rate
DoS attack

Additionally, the round trip time has been set to RTT = N (0.6 s, 0.2) and the
capacity of the system is N = 20.

It can be observed that a very high efficiency is obtained, given by S = 94%
and U = 9.04%. On the other side, the value of the overflow percentage, O =
77.08%, indicates that the traffic offered to the server by both the users and
the intruder is four times its capacity. If the intruder wanted to bypass an IDS
system able to detect attacks on this rate, effectiveness should be sacrificed to
reduce the overflow rate. This could be easily achieved by reducing ontime or
increasing interval. In order to know the amount of traffic that the intruder
generates, the effective effort is defined as the traffic offered by the intruder
normalized by the capacity of the server:

effective effort =
packets sent by intruder

total packets accepted by server
(6)

In Fig. 8, 25 possible attacks to the previously defined server are shown.
The user success percentage and the effective effort are represented in main
and secondary axes, respectively. It can be seen that there are a lot of possible
configurations eligible for the attack in order to bypass IDS systems and, at
the same time, obtain the best efficiency. As it has already been deduced in
previous sections, a better efficiency implies a higher effort, as it can be seen in
the tendency line.

Although these values could indicate a minor effectiveness, the results give
us a good idea about the performance of the attack.

5 Real Environment Validation

We have tested also the proposed attack in a controlled real application to
check its validity. The selected server is a web server that keeps the condi-
tion of serving requests in a monothreaded way. Although this is not a typical
monothreaded application, it can be configured this way for this purpose. For-
mer extension of the attack to multithreaded servers has motivated the election
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Table 1. Real time and simulation values for selected experiments

of this real environment. Therefore, Apache 2.0.52, configured with the directive
ThreadsPerChild = 1, presents a monoprocess behaviour. This way, we ensure
that the processing of a request blocks those awaiting in the service queue. Also,
we have considered that every request consists in a connection request. The at-
tack establishes connections and sends no messages on them, letting the web
server to close the connection after a timeout period specified by the Apache
directive Timeout. This directive corresponds in our model to the value E[Ts] in
the server configuration value.

The scenario is analogous to that one used for the theoretical study. The
user traffic has been generated following a Poisson process. A piece of soft-
ware launches the attack from a single source. Both legal users and intruder
traffic flows traverse a WAN network to reach the server, with a round trip
time RTT = N (17ms, 0.05ms). Traces on the users and the intruder side
have been issued for collecting the necessary data to calculate the attack
indicators.

Among the results obtained from the set of experiments carried out, Table 1
shows some examples with a comparison between the obtained indicators in the
simulation and in the real environment, for different mean service times (E[Ts])
and user traffic arrival rates (E[Ta]). The values for E[Ta] have been selected
in such a way that there is no congestion on the server without any attack. In
these experiments, we have chosen values for ontime= 0.4 s, interval = 0.4 s,
offset= 0, and Var[Ts]=0.01. The capacity of the server is N = 7.

We can observe the accuracy of the results obtained from simulations when
compared with those for the real environment. Surprisingly, we can even ob-
tain better results in efficiency (lower U and higher S, with lower O) for the
attack in a real environment in some cases (e.g., first scenario with E[Ts] = 3).
From these results, two conclusions can be made: a) all the experiments in the
simulation case seem to provide results that are good approximations to the be-
haviour in real environments, and b) the real impact of the attack is very high,
showing that these vulnerabilities in monoprocess servers are able to be easily
exploited.
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6 Conclusions

In this work, a vulnerability present in monoprocess or monothreaded servers is
described. It consists in the possibility of knowledge, by an intruder, of the inter-
output time of a server under congestion conditions. This vulnerability allows an
intruder to perform a denial of service attack against a server. The attack could
be designed to nearly or completely saturate the capacity of the target system
but, as a difference from the usual brute-force DoS attacks, it uses a relatively low
rate of packets to the target server to achieve its goal. Moreover, it is possible to
tune the attack parameters in order to select the appropriate values for efficiency
and load generated in the server. This distinctive characteristic could allow the
attack to bypass, in many cases, existent IDS systems, thus becoming a non-
detectable threat.

As a difference to other existent low rate DoS attack [15], this one threatens
the application level, maintains the server engaged serving intruder requests and
get advantage of the knowledge of the inter-output time of the target server.
However, it has some common features with the low rate DoS attack to TCP,
what points out the existence of a new family of DoS attacks, characterized by
the fact that they rely on vulnerabilities that consist in the a-priori knowledge
of one timer of a protocol or end-system behaviour, and that allows the intruder
to carry out the DoS attack with a low rate of transmission, avoiding most of
the current IDS systems.

The fundamentals and details of the design of a possible exploit have been
explained. It has been demonstrated that this attack can be easily carried out
and that it can obtain very efficient results. The potential risk that this attack
presents is really worrying, due to the fact that it could behave very similar
to legacy users, bypassing IDS systems and possibly affecting the services in a
server.

As a future work, we plan to extend the study of this vulnerability in con-
current servers, due to the fact that this kind of servers is more widely deployed
in Internet.
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