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"Business Intelligence and Data Mining: Today and Future".

Review Process

A total of 52 papers were submitted to the workshop,'including 7 in Chínese.
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Preface

In the last few years, major Data Mining conferences, such as KDD and PKDD
have included in their program workshops that are focused on applications. The
success of these workshops has lead us to believe that it is time for another
major conference, the Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD), to host a "Data Mining for Business" Workshop. The events
will take place in beautiful and historical Nanjing (China) and the workshop will
be held on May 22.

The workshop is organized by Carlos Soares (University of Porto), Yonghong
Peng (University of Bradford) and Jun Meng (Zhejiang University). The goal is
to gather researchers and practitioners to discuss relevant issues in the applica-
tion of data mining technology in practice and to identify important challenges
to be addressed in future research.

We are sure that this workshop will provide a forum for the fruitful interaction
between participants from universities and companies, but we aim to go beyond
that! We hope that this workshop will become the starting point for practical
projects that involve people from the two communities. The future will tell if we
succeeded.

Motivation

Business, government and science organizations are increasingly moving towards
decision-making processes that are based on information. In parallel, the amount
of data representing the activities of organizations that is stored in databases is
also growing. Therefore, the pressure to extract as much useful information as
possible from this data is very strong.

Many tools for Data Mining (DM) and Business Intelligence have been de-
veloped for that purpose. Additionally, DM methods are increasingly being in-
tegrated into other information systems and tools (e.g., customer relationship
management, datábase management systems, network security tools).

Despite the maturity of the field, new problems and applications are continu-
ously challenging both researchers and practitioners. The successful development
of solutions for those problems requires that companies and universities work in
cióse contact. Feedback from people with a business-oriented perspective is useful
to assess current research results and to provide researchers with new challenges
to work on. On the other hand, practitioners as well as decisión makers in gen-
eral need .to be in touch with state-of-the-art research. Otherwise, they will not
be ab?e to provide the best solutions to their problems or to the problems of
their clients. However, contact between these two communities is not as frequent
as would be desirable. Although data mining, knowledge discovery and machine
learning conferences provide an important contribution, they mostly attract an
audience with a more technical and research background.
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A KNN-based Evolutionary Algorithm for Intrusión
Detection in Networks

Francisco de Toro-Negro, Pedro García-Teodoro, Jesús E. Díaz-Verdejo, and
Gabriel Maciá-Fernández

Signa! Theory, Telematics and Communications Department,
University of Granada, Spain

{f toro,pgteodor, jedv, gmacia}@ugr.es

Abstract This paper addresses the use of an evolutionary algorithm for the
optimization of a K-nearest neighbor classifier to be used in the ¡mplementation
of an intrusión detection system. The inclusión of a diversity maintaining
technique embodied in the design of the evolutionary algorithm enables to
obtain different subsets of features extracted from network traffic data that lead
to high classifícation accuracies. The methodology has been preliminary
applied for Denial of Service attack detection.

1 Introduction

With the increased complexity of security threats, such as malicious Internet worms,
denial of service (DoS) attacks, and e-business application attacks, achieving efftcient
network intrusión security is critical to maintaining a high level of protection. The
effícient design of intrusión detection systems (IDS) is essential for safeguarding
organizations from costly and debilitating network breaches and for helping to ensure
business continuity. An IDS is a program that analyzes what happens or has happened
in a computer network environment and try to find indications that the computer has
been misused. An IDS will rypically monitor network traffic data passing through the
network in order to genérate an alert when an attack event is taking place. Machine
learning algorithms [1] such as binary classifiers can be optimized so they sepárate
two different groups of observations: normal traffic and anomalous traffic (containing
some kind of attack) with a certain classifícation performance.The optimizaíion can
involve the setting of certain parameters of the classifier or finding the network traffic
features that lead to a good classifícation performance, the so-called feature selection
problem [2].

Evolutionary algorithms (EAs) [3,4] have been showing a great success dealing
with optimization problems with several solutions [5, 6] due to its special ability to
explore large search spaces and capture múltiple solutions in a single run. In this
context, the present work tackles the use of an EAs based on deterministic crowding
[9] for the optimization of a K-Nearest Neighbour (KNN) binary classifier and its
evaluation in an intrusión detection domain.

This work is organized as follows: Section 2, the overall methodology presented in
this paper is described. Thus, Section 3 shows some experimental work carried out by
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ntrusion
using labeled network traffic data provided by DARPA [7]. Finally, Section 4 is
devoted to discuss main results and conclusions.
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2 A KNN-based evolutionary algorithm for intrusión detection

In the proposed methodology for intrusión detection, network data (IP packets) are
organized into data flows. Then, n features - previously defined- characterizing the
data flows are extracted to obtain an «-dimensional feature vector representing the
network traffic in a given time window. A KNN binary classifier is optimized to
classify each feature vector as belonging to normal traffic or malicious traffic, Feature
vectors are normalized to have a valué ranging between O and 1. A candidato solution
to the problem is an n-dimensional weight vector. Each component of the weight
vector is a real number ranging between O and 1 and will be representing the degree
of importance of each feature in the classification process. For the optimization of the
classifier, an evolutionary algorithm based on deterministic crowding has been used
(see Fig. 1). Due to the fact that the an EA works with a population of k individuáis
candidate solutions, different choices of weight vectors can be explored in a single
iteration of the algorithm. If the necessary diversity maintaining mechanism [8] is
incorporated into the EAs, the found solutions will be geometrically different one
from each other, providing flexibility to select the features to be considered in the
intrusión detection system. This is of great importance due tó the fact that the
extraction of some features can be less time-consuming than others (i.e. they can be
computed by using a smaller window time or they have less complex extraction).

DeterminislicJCrowding Pmredure
01 Créate randomly Population P of Candidate Solutions (individuáis) of Size Pnpsize
02 While (slop_condition) FALSE

03 P' =0

04 While (S\Kof(P')# Popsize)
05 Select two individuáis pt and p¡ from P (without replacement)

06 Crossover p, and p¡ to obtain A, and H1

07 Muíate h, and h¡ to obtain c¡ and C2 (with mutation probability rate pmuí)
08 If

[Distance (p,;c,) + Distance (p2,e2)] <. [Distance (p,,c2) + Distance (p2,c,)]
09 If c, is better than p, then /'*=/'' u{c,) else P' = P' w ( / 7 , J

10 If C2 isbetterthan p2 then />' = / > 'u¡c 2 ) else P' = / J ' v j { / 7 2 )
Else

1 1 If C, isbetterthan p2 then /•' = /> * u (e,) else P' = P' u(/>2)

12 IfC2 isbetterthanp, then P'= P' u(c2) else /»'» P' u{/>,)
EndWhile

13 P = P'
14 Evalúate the Performance of each candidate solution in P using the Diagnostic Scheme

(K- nearest neighboum classifier)
EndWhile

Fig. 1. Evolutionary Algorithm based on deterministic crowding used for training the classifier
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3 Resulte

For the purpose of testing the aforementioned classifier methodology, a network
datábase for training purpose provided by DARPA [7] has been used. This datábase is
built with simulated network traffíc data containing normal traffic data and 22
different kinds of computer attacks that fall in one of the following groups:
• DoS (Denial of Service): the attacker targets some corhputing or memory

resource and makes it too busy or full to handle legitímate requests, or denies
legitímate user access to that resource, for example SYN flood, ping of deáth,
smurf, etc.

• R2U (Remote to User): the attacker exploits some vulnerability to gain
unauthorized local access from a remote machine, for example guessing
password.

• U2R (User to Root): the attacker has access to a normal user account (obtained
legitimately or otherwise) and using this is able to gain root access by exploiting
a vulnerability hole in the system, for example buffer overflow attacks.

• PROBÉ (Probing): attacker scans the network to gather information or fínd
known vülnerabilities. An attacker with a map of machines and services that are
available on a network can use this information to look for weak points, for
example through port sean.

There are 41 features present in the data set. The first 9 of these are "intrinsic"
features which describe the basic features of individual TCP data flows (TCP
connections), and can be obtained from raw tcpdump output. The remainder features
have been cónstructed as described in [12, 13]. Thus, features 10 to 22 are content-
based features obtained by examining the data portíon (payload) of a TCP data flow
and suggested by domain knowledge. Features 23 to 41 are "traffíc-based" features
that are computed using a window. Features 23 to 31 use a two-second time window
("time-based"), and features 32 to 41 are cónstructed using a window of 100 TCP
connections ("host-based"). The reasons for the different Windows is that the DoS and
PROBÉ attacks were shown to involve many TCP connections in a short time frame,
whereas R2U and U2R attacks are embedded in the data portions of the TCP
connections and normally involve a single TCP connectión.

In this work, only the detection of attacks falling in the category of DoS attacks is
addressed. On other hand, only numérica! features have been considered from the
original feature set. This way, only 6 out of the 9 "intrinsic" features have been used
in this work. As part of the pre-processing of the datábase, duplícate data were
withdrawn. Training and evaluation were performed by a random selection of 500
feature vectors labelled as normal traffic, and 500 feature vectors classified as DoSattacks.

• Classification Accuracy (C): represents the ratio between that correctly classified
traffic and the overall traffic.

• Sensitivity (S): represents the ratio between that detected malicious traffic and
the total malicious traffic.
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The evaluation of the parameters C and S is calculated by applying the leaving one
out method [14]. In each cycle, one vector is selected from the datábase as the test
element. This vector is classified with the rest of the individuáis in the population
serving as classification references.

The crossover operator used in the deterministic crowding procedure is a single-
point real-coded operator. Two different types of mutation have been considered:
uniform mutation and Gaussian mutation.

The Evolutionary Algorithm ran during 400 iterations with 50 candidate solutions
(individuáis) with reached classifications accuracies ranging between 95% and 99%.
Five of the found solutions (weigh vectors) are shown in Table 1. These results are
slightly better thart others machine learning algorithms used in IDS applications in the
literature, such as k-means clustering [15,16] that has achieved 97.85% of
performance accuracy or classifiers based on rules [17] or decision-trees [18] which
has achieved 96.9% and 97.5% of performance accuracy respectively. Furthermore,
our approach has the importan! advantage of its easier implementation. Solutions with
higher sensitivity are better than others with lower sensitivity. The retrieval of several
solutions during the optimization of the classifier enables to give a certain degree of
flexibility of choosing the features to be used in the detection (for example those of
easier extraction from the network traffic data).

4 Summary

This work addresses attack detection by using a new methodology consisting in a K-
Nearest Neighbour binary classifier which produces a decisión labe! (malicious traffic
or normal traffic) by processing a feature vector representing the network traffic
during a given window time. The features are automatically weighted by using an
evolutionary algorithm in order to optimize the performance of the KNN Classifier.
The retrieval of more than one solution during the optimization process gives a certain
degree of flexibility to choose the features to be used in the detection process. The
methodology has been preliminary applied to Denial of Service attack detection
contained in DARPA datábase and has been validated by using leaving one out
method. As future work, the authors are intended to explore the performance of this
methodology on others network traffic datábase and set of features.

Acknowledgements. This work has been supported by the Spanish Government
through MEC (Project TSI2005-08145-C02-02, PEDER funds 70%) and by the
European Community -Research Infrastructure Action under the FP6 "Structuring the
European Research Área" Programme- through HPC-EUROPA project (RII3-CT-
2003-506079).
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Table 1. Classification accuracy (C ) and Sensibility (S) of five of the found solutions (weight
vectors) to the problem of DARPA Denial of Service attack. detection

#Feature
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

C(%)
S(%)

Solution #1
0.02
0.73
0.21
0.07
0.83
0.33
0.92
0.99
0.47
0.40
0.87
0.98
0.42
0.75
0.60
0.94
0.46
0.99
0.61
0.90
0.52
0.30
0.75
0.45
0.75
0.15
0.25
0.19
0.64
0.45
0.75
0.75
0.12
0.90
0.42
0,50
0.42
0.98
97.2
98.1

Solution #2
0.80
0.00
0.75
0.06
0.96
0.85
0.46
0.18
0.40
0.10
1.00
0.04
0.63
0.63
0.23
0.91
0.25
0.48
0.75
0.56
0.03
0.60
0.91
0.66
0.29
0.75
0.76
0.09
0.08
0.80
0.25
0.53
0.10
0.04
0.02
0.73
0.62
0.89
973
98.4

Solution #3
0.37
0.90
0.14
0.29
1.00
0.87
0.47
0.18
0.75
0.47
0.22
0.02
0.95
0.21
0.95
0.25
0.72
0.62
0.54
0.58
0.91
0.46
0.52
0.03
0.93
0.95
0.80
0.08
0.33

'0.49
0.59
0.99
0.58
0.61
0.29
0.51
0.94
0.41
97.2
98.1

Solution #4
0.01
0.75
0.20
0.06
0.82
0.24
0.92
0.99
0.25
0.40
0.87
0.98
0.42
0.96
0.99
0.59
0.91
0.50
0.12
0.86
0.75
0.74
0.50
0.05
0.62
0.16
0.68
0.90
0.58
0.89
0.43
0.95
0.29
0.76
0.78
0.20
0.29
0.93

94.4
99.0

Solution #5
0.01
0.75
0.20
0.06
0.82
0.24
0.92
0.99
0.25
0.40
0.87
0.98
0.42
0.96
0.99
0.59
0.91
0.50
0.12
0.86
0.75
0.74
0.50
0.05
0.62
0.16
0.68
0.90
0.58
0.89
0.43
0.95
0.29
0.76
0.78
0.20
0.29
0.93
94.5
99.2
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